首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

2.
Five zinc(II) complexes, [Zn(L1)2] (1), [Zn(L1)2(phen)H2O]·H2O (2), [Zn(L1)2(bipy)] (3), [Zn(L2)2] (4), and [Zn(L2)2(phen)] (5) (where L1?=?4-nitrophenylacetate, L2?=?phenylacetate, phen?=?1,10-phenanthroline and bipy?=?2,2′-bipyridine), have been synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR. Complexes 2, 3, and 4 have been confirmed by single-crystal X-ray diffraction. In 2 and 3, zinc is bonded monodentate to two carboxylates exhibiting distorted trigonal bipyramidal and tetrahedral geometries, respectively, whereas in 4, the carboxylates are bridging bidentate in distorted tetrahedral geometry. The complexes have been screened for electro- and biological activities, including DNA interaction and enzyme inhibition studies. The effect of concentration of 1–5 on the activity of enzyme, alkaline phosphatase, showed that an increase in concentration of complex decreased the activity of the enzyme. Electrochemical behavior of HL1, 2, and 3 was investigated by cyclic voltammetry and it was observed that ligand-centered electro-activity exhibits a proportionate change on complexation. The UV–visible spectroscopic and viscometric data indicate electrostatic and groove binding of the complexes with DNA. The binding constant and Gibb’s free energy values indicate the feasibility of the complex–DNA interaction and show potent biological activity of the complexes.  相似文献   

3.
The complexes [Ir(COD)(η5-C7H9)] and [Ir(COD)(η5-C8H11)] are obtained by the isoprophyl Grignard synthesis of [Ir(COD)Cl]2 (COD = η4-1,5-cyclooctadiene) in the presence of cycloheptatriene, and cyclooctatriene, respectively. The later reaction yields [IrH(COD)(δ4-1,3,6-C8H10)] as a by-product which, in contrast to other [IrH(η4-cyclodiene)2] complexes, does not show H-addition-elimination equilibria. Reduction of [Ir(1,3-C7H10)2Cl] with C2H5OH/Na2CO3 yields [Ir(η4-1,3-C7H10)](η5-C7H9)] which was characterized by X-ray analysis. [Ir(COD)Cl]2 reacts with Na2C8H8, and after hydrolysis unstable [Ir(COD)(η5-C8H9)] is formed which by protonation with HPF6 is converted into the [Ir(COD)(η6-1,3,5-C8H10)]+ cation. All these compounds are fluxional in solution.  相似文献   

4.
Marcazzan  P.  Patrick  B. O.  James  B. R. 《Russian Chemical Bulletin》2003,52(12):2715-2721
The room temperature reaction of the complex cis,trans,cis-[Ir(H)2(PPh3)2(Solv)2]PF6 (Solv is a solvent) with the imine PhCH2N=CHPh in acetone generates (with loss of H2) the orthometallated complex [Ir(H){PhCH2N=CH(o-C6H4)}(PPh3)2(Me2CO)]PF6 (3) containing a five-membered cyclometallated imine moiety. In MeOH, the reaction at an imine : Ir ratio = 1 leads to the corresponding MeOH analog of 3, while with excess imine, the mixed orthometallated imine/bezylamine complex [Ir(H){PhCH2N=CH(o-C6H4)}(PPh3)2(PhCH2NH2)]PF2 (4) is formed; the source of the coordinated amine is an Ir-promoted hydrolysis of the imine, the water likely coming from imine. Complexes 3 and 4 are fully characterized by elemental analysis, 1H and 31P{1H} NMR spectroscopy, and X-ray crystal structure analysis.  相似文献   

5.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

6.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

7.
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1.  相似文献   

8.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

9.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

10.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

11.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

12.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

13.
Two new dinuclear macrocyclic complexes, [Ni2L1(OAc)]·ClO4 (1) and [Co2L2(OAc)]·1.5(ClO4)·0.5Na·2(CH3OH) (2) (where H2L1 and H2L2 are the condensation products of N,N-bis(3-aminopropyl)-4-methoxybenzylamine with 2,6-diformyl-4-brominephenol and 2,6-diformyl-4-methylphenol in the presence of metal ions, respectively) have been synthesized and characterized by infrared spectra, elemental analysis, electrospray mass spectra, and X-ray single crystal diffraction. The interactions of the complexes with CT-DNA have been measured by UV-absorption titrations and fluorescence quenching experiments.  相似文献   

14.

The green colored trithiocarbamato complexes of dirhenium(III,III) of type [Re2(μ-η2-SLR)22-LR)3][ReO4] (4(LR)), where LR represents the dithiocarbamato ligands [LR?=?S2CNEt2, 4(LEt) and S2CN(CH2)4, 4(LPyr)], have been synthesized in moderate yield by reacting Re2(μ-O2CCH3)4Cl2 (1) and sodium salt of diethyldithiocarbamate or pyrrolidinedithiocarbamate in boiling ethanol under nitrogen atmosphere. The spectral (IR, UV–vis, NMR) and electrochemical properties of the complexes are reported. The identity of complex 4(LEt) has been established by single-crystal X-ray structure determination. The density functional theory (DFT) calculations rationalized the electronic structure of complexes 4(LR) in comparison with dithiocarbamato complexes of dirhenium(II,II) and dirhenium(III,II). The absorption spectra of the 4(LR) complexes are scrutinized by the time-dependent DFT analysis.

  相似文献   

15.
Dicationic triple-decker complexes [CpCo(μ-1,3-C3B2Me5)M(C6H6)]2+ (M = Rh (3), Ir (4)) were synthesized by the reaction of [CpCo(μ-C3B2Me5)MBr2]2 (M = Rh, Ir) with benzene in the presence of AgBF4. The structure of 3(BF4)2 was determined by X-ray diffraction analysis.  相似文献   

16.
The rhenium(I) carbonyl halide (X = Cl and Br) complexes, [ReX(CO)3{H2(py)L2}] (1a, 1b) and [ReX(CO)3{H2(Fc)L2}] (2a, 2b), of the ligands derived from 2-acetylpyridine and ferrocenyl carbaldehyde derivatives of 2-hydroxybenzoic acid hydrazide [H2(py)L2 and H2(Fc)L2, respectively] have been prepared in good yield. The complexes have been characterized by elemental analysis, MS, IR, UV-Vis and 1H NMR spectroscopic methods and their structures have been elucidated by X-ray diffraction. The ligand forms a five-membered chelate ring but in H2(py)L2 it is Npyridine,N′-bidentate while it is O,N-bidentate in H2(Fc)L2 complexes.Reaction of complex 1a with copper(II) nitrate yields the unexpected aqua complex [Re{H(py)L2}(H2O)(CO)3] (3) where the ligand is monodeprotonated but maintains the coordination mode observed in 1a, as shown by X-ray diffraction. However, reaction of 1b with glycine yields a conformational polymorph of the original compound, 1b′. The X-ray study shows that the orientation of the O-H phenol group against the carbonyl amide group is the main difference.  相似文献   

17.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

18.
The reaction of the (borole)rhodium iodide complex [(η-C4H4BPh)RhI]4 with Cp*Li afforded the sandwich compound Cp*Rh(η-C4H4BPh) (4). The reactions of compound 4 with the solvated complexes [Cp*M(MeNO2)3]2+(BF 4 )2 gave triple-decker cationic complexes with the central borole ligand [Cp*Rh(η-η55-C4H4BPh)MCp*]2+(BF 4 )2 (M = Rh (5) or Ir (7)). The structure of complex 4 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1525–1527, September, 2006.  相似文献   

19.
Photolytic substitutions of iron selenocarboxylate complexes CpFe(CO)2SeCOR with triphenylphosphine, triphenylarsine or triphenylantimony (EPh3) gave exclusively the monosubstituted complexes CpFe(CO)(EPh3)SeCOR [R = 3,5-C6H3(NO2)2 (1), 4-C6H4NO2 (2), Ph (3), 2-C6H4Me (4), and E = P (a), As (b), Sb (c)] in high yields.  相似文献   

20.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号