首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new heterotrinuclear complexes have been synthesized and characterized, namely {[Ni(L)2]2[Cu(opba)]}(ClO4)2, where opba denotes o-phenylenebis(oxamato) and L stands for 1,10-phenanthroline(phen) (1), 5-nitro-l,10-phenanthroline(NO2-phen) (2), 2,2′-bipyridyl(bpy) (S) and 4,4′-dimethyl-2,2′-bipyridyl(Me2bpy) (4). The temperature dependence of the magnetic susceptibility of {[Ni(phen)2]2[Cu(opba)]}(ClO4)23H2O has been studied in the 4–300 K range, giving the exchange integral J—109 cm?1. The HMT vs. T plot exhibits a minimum at about 100 K, characteristic of this kind of coupled polymetallic complex with an irregular spin-state structure.  相似文献   

2.
Abstract

Meridional geometrical isomers of cobalt(III) complexes with sarcosine (N-methylglycine) and tetradentate ligands edda (ethylenediamine-N,N′-diacetate ion), eddp (ethylenediamine-N,N′-di-3-propionate ion) and 1,3-pdda (1,3-propylenediamine-N,N′-diacetate ion) have been prepared. The edda and eddp cobalt(III) complexes were made by the reaction of sarcosine and sodium ethylenediamine-N,N′-diacetato(carbonato)cobaltate(III), and sodium uns-cis-(ethylenediamine-N,N′-di-3-propionato)(carbonato)cobaltate(III) dihydrate, respectively. The previously synthesized pdda-cobalt(III) complex with sarcosine was obtained by a new route by direct synthesis of cobalt(II) chloride hexahydrate with sarcosine and 1,3-pdda in the presents of lead(IV) oxide. Complexes were isolated chromatographically and characterized by elemental analysis, electron absorption spectra, infrared spectra and 1H NMR spectroscopy.  相似文献   

3.
Potassium 1,3-bis(N-methyl piperazino)propan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) ions have been prepared and characterized as [CoL2(H2O)2], [NiL2(H2O)2]·2H2O and CuL·2H2O by FT-IR, 1H and 13C?NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

4.
用模板法合成了1个大环金属铜(II)配合物[CuLCl2]·3H2O (1)和3个大环金属镍(II)配合物[NiLCl2] (2),[NiL](ClO4)2 (3)和[NiLH2](ClO4)4 (4)(L=3,10-二乙基-1,3,5,8,10,12-六氮杂十四烷),通过X-射线衍射单晶结构分析测定了它们的晶体结构。晶体结构显示:配合物12的金属离子与大环配体的4个氮原子及大环平面轴向的2个氯离子以八面体配位方式配位;配合物34的金属离子与大环配体的4个氮原子以平面正方形配位方式配位,配合物4的侧链氮原子的质子化导致侧链结构翻转,使得其侧链与大环平面共面。  相似文献   

5.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

6.
Abstract Two new square planar Cu(II) and Ni(II) complexes, [CuL1(NCO)] (1) and [NiL2(N3)] (2) have been synthesized with two different tridentate N2O donor Schiff base ligands L 1 H (1:1 condensation product of benzoylacetone and 2-diethylaminoethylamine) and L 2 H (1:1 condensation product of benzoylacetone and 2-dimethylaminoethylamine), respectively. Both the complexes 1 and 2 have been characterized by elemental analysis, IR, UV-Vis spectroscopy, room temperature magnetic susceptibility measurement, electrochemical, thermal, and single crystal X-ray diffraction studies. Structural studies reveal that in both the complexes metal centers have square planar environment with N2O donor set of Schiff base ligands and terminal pseudohalide anions (isocyanate for 1 and azide for 2) at four coordination sites of square plane. Graphical abstract Square planar complexes of Cu(II) and Ni(II) with N 2 O donor set of two Schiff base ligands: synthesis and structural aspects Subhra Basak, Soma Sen, Samiran Mitra, C. Marschner, W. S. Sheldrick Two new square planar Cu(II) and Ni(II) complexes, [CuL1(NCO)] (1) and [NiL2(N3)] (2) have been synthesized with two different tridentate N2O donor Schiff base ligands L 1 H and L 2 H respectively. Both the complexes 1 and 2 have been characterized by elemental analysis, IR, UV-Vis spectroscopy, room temperature magnetic susceptibility measurement, electrochemical, thermal and single crystal X-ray diffraction studies.   相似文献   

7.
Schiff bases of isatin were reported to possess antibacterial, antifungal, antiviral, anti-HIV, antiprotozoal, and anthelmintic activities1. They also exhibit significantanticonvulsant activity, apart from other pharmacological properties2. Conductingsubs…  相似文献   

8.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

9.
Abstract

The new 1,2-dithiolene, 1,4-butanediyldithioethylene-1,2-dithiolate, has been isolated. In addition, new monoanionic bis-complexes with nickel and copper have been prepared and isolated. The formal Ni(III) complex crystallizes in the orthorombic space group, Pbca, with a = 9.762(9), b = 12.53(2), and c = 23.166(3) Å, with 4 molecules in the unit cell. The structure was refined to an R = 9.01% (Rw = 8.95%). The formal Cu(III) complex crystallizes in the monoclinic space group, C2/c, with a = 25.567(6), b = 8.011(3), c = 14.504(3) Å, and β = 106.17(2)° with 4 molecules in the unit cell. The structure refined to R = 4.2% with R w = 4.3%. Comparisons to similar 1,2-dithiolenes suggest this ligand produces only modest structural and electronic differences when compared to the 1,3-propanediyldithioethylene-1,2-dithiolate complexes. The oxidation (to a neutral complex) and reduction (to a dianion) for the Ni(III) and Cu(III) complexes show large differences from those of maleonitriledithiolate. Other physical data are presented as well.  相似文献   

10.
本文用紫外光谱研究了等离子点附近HSA或BSA (?)Cu(Ⅱ)或Ni(Ⅱ)金属中心的结构。结果表明:在pH4.0~5.3时,Cu(Ⅱ)—HSA配合物在低浓度时独具五配位的四方锥构型,高浓度时(>10~(-4)mol·1~(-1))为四配位的四方平面构型,Cu(Ⅱ)—BSA、Ni(Ⅱ)—BSA在上述pH范围内均只存在四方平面构型。Cu(Ⅱ)、Ni(Ⅱ)结合位置与生理pH下的相同,均在白蛋白的N端三肽段上,与Asp~1的α-NH_2、His~3的咪唑基N及两个去质子肽氮配位,Cu(Ⅱ)在HSA中的第五结合基团为Asp~1的羧基。本文还对上述pH效应进行了讨论。  相似文献   

11.
Abstract

The 1:1 molar ratio reaction of p-phenylenediamine with isonitrosoacetylacetone in chloroform led to the formation of the half unit ligand (HL); (1). Two types of the trans octahedral (L)2Ni 2H2O complex were characterized; the green molecular complex (2) and the associated supramolecular dark brown complex (3). Molecular association in (3) took place via inter-molecular hydrogen bonding between the amino group of a molecule and the oxygen sites of an adjacent molecule. The 1:1 molar ratio reactions of (2) with the metal acetates M(OAc)2 (M = divalent nickel, copper or cobalt) produced the self-assembly structure (4) whereby the metal acetate is coordinated to the amino groups of the nickel(II) complex. Reaction of the dinuclear (4) with another metal acetate (1:1 molar ratio) gave the trinuclear terminated structure (5). Similar reactions of (3) with nickel acetate (1:1 or 1:2) led to formation of complexes with metallosupramolecular structures. An antiferromagnetic interaction between the peripheral and central paramagnetic units was observed from those complexes with copper(II) at the peripheral location. In all these cases the metal ions are bridged via the aromatic Schiff-base moiety. The suggested structures of the mono-, di- and trinuclear coordination compounds are in accordance with the analytical, spectral and magnetic moment data.  相似文献   

12.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

13.
Abstract

The synthesis and properties of new cationic iron(II) complexes of general formula [(η5-C5H5)FeL(η2-dppa)]A [A=I?, L = CO(1); A = BF4, L = CO(2) CH3CN(4), η1-dppa(5); dppa = NH(PPh2)2] are described. The carbonyl complex [(η5-C5H5)Fe(CO)(η2-dppa)]BF4 is deprotonated to give the neutral complex [(η5-C5H5)Fe(CO){η2-(PPh2)2N}](3). All complexes have been characterized by elemental analysis and IR and NMR spectroscopies. Cyclic voltammetry of complexes 1–5 shows a diverse redox chemistry in acetonitrile solution. While the reduction of 1 and 2 leads to the formation of a dinuclear Fe(I) complex, 4 and 5 form mononuclear species of Fe(I); oxidation of metal centers of 1 and 2 is not observed and in complexes 3 and 4 the metal centers are oxidized at potentials < 1. Complex 5 in acetonitrile solution is transformed into complex 4.  相似文献   

14.
Two new series of Fe(III) Schiff-base complexes have been prepared and characterized by elemental and thermogravimetric analyses, IR, electronic, ESR and Mössbauer spectra. The Fe(III) complexes possess octahedral, pseudo-octahedral or pseudo-tetrahedral geometries around Fe(III), depending on the nature of the Schiff-base ligand used.  相似文献   

15.
Potassium 1,3-dipyrrolidinopropan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) have been prepared and characterized as [CoL2(H2O)2]?·?2H2O, [NiL2(H2O)2] and CuL?·?2H2O by FT-IR, 1H and 13C NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

16.
Abstract

Complexes of Cu(II) with N-(2′-carboxyphenyl)benzamide (CPBH), 2-amino-N-(2′-carboxyphenyl)benzamide (ACPBH), isoxazolylbenzamine (IB), N-anilinobenzamide (AB), N-(2-pyridyl)-3-carboxypropanamide (PCPAH) and N-(2-pyridyl)-2-carboxybenzamide (PCBAH) have been prepared and characterized by analyses, magnetic susceptibility measurements, thermal studies and I. R., electronic and EPR studies. Visible and E. P. R. spectra indicate that the complexes are monomeric, having either square planar or distorted octahedral geometry. Interesting amide bonding patterns have been observed and various E. P. R. parameters have been evaluated.  相似文献   

17.
Abstract

The ESR parameters were determined for copper(II) complexes with various 14-, 15- and 16-membered N4-macrocyclic ligands. Of these ESR parameters g has the most simple relation to the covalency of the coordination bonds in the present compounds, i.e., the smaller the g value the larger the covalency. The order of covalencies derived from the g values nicely matches with that supposed from the size of macrocyclic rings and the charge of the ligands. The approach to the estimation of covalency of the coordination bonds by use of copper hyperfine coupling constant was examined, but it was found that this approach gives rather unreliable results for the present compounds.  相似文献   

18.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

19.
Synthesis of Copper and Silver Complexes with Pentadentate N,S and Hexadentate N,O Chelate Ligands – Characterization and Crystal Structures of {Cu2[C6H4(SO2)NC(O)]2(C5H5N)4}, {Cu2[C5H3N(CHNC6H4SCH3)2]2}(PF6)2, and {Ag[C5H3N(CHNC6H4SCH3)2]}PO2F2 In the course of the reaction of copper(II)-acetate monohydrate with 2,2′-bisbenzo[d][1,3]thiazolidyl in methanol the organic component is transformed to N,N′-bis-(2-thiophenyl)ethanediimine and subsequently oxidized to the N,N′-bis-(2-benzenesulfonyl)ethanediaciddiamide H4BBSED, which coordinates in its deprotonated form two Cu2+ ions. Crystallisation from pyridine/n-hexane yields [Cu2(BBSED)(py)4] · MeOH. It forms triclinic crystals with the space group P1 and a = 995.5(2) pm, b = 1076.1(3) pm, c = 1120.7(2) pm, α = 104.17(1)°, β = 105.28(1)°, γ = 113.10(1)° and Z = 1. In the centrosymmetrical dinuclear complex the copper ions are coordinated in a square-pyramidal arrangement by three nitrogen and two oxygen atoms. The Jahn-Teller effect causes an elongation of the axial bond by approximately 30 pm. The reactions of the pentadentate ligand 2,6-Bis-[(2- methylthiophenyl)-2-azaethenyl]pyridine BMTEP with salts of copper(I), copper(II) and silver(I) yield the complexes [CU2(BMTEP)2](PF6)2, [Cu(BMTEP)]X2 (X = BF, C1O) and [Ag(BMTEP)]X (X = PO2F, ClO). [Cu2(BMTEP)2](PF6)2 crystallizes from acetone/diisopropyl- ether in form of monoclinic crystals with the space group C2/c, and a = 1833.2(3) pm, b = 2267.30(14) pm, c = 1323.5(2) pm, β= 118.286(5)°, and 2 = 4. In the dinuclear complex cation with the symmetry C2 the copper ions are tetrahedrally coordinated by two bridging BMTEP ligands. The Cu? Cu distance of 278.3pm can be interpreted with weak Cu? Cu interactions which also manifest itself in a temperature independent paramagnetism of 0.45 B.M. The monomeric silver complex [Ag(BMTEP)]PO2F2 crystallizes from acetone/thf in the triclinic space group P1 with a = 768.7(3) pm, b = 1074.0(5) pm, c = 1356.8(5) pm, α = 99.52(2)°, β = 96.83(2)°, γ = 99.83(2)° and Z = 2. The central silver ion is coordinated by one sulfur and three nitrogen atoms of the ligand in a planar, semicircular arrangement. The bond lengths Ag? N = 240.4–261.7 and Ag? S = 257.2 pm are significantly elongated in comparison with single bonds.  相似文献   

20.
Abstract

A new Schiff-base ligand LH2, has been prepared by reaction of 2,9-diformv 1-1,10-phenan-throline with 2,3-diamino-l,4-naphthoquinone. The formation and characterization of complexes of Zn(II), Cd(II), Hg(II) and Pb(II) with the semi-oxidized ligand LH is described. The M(LH)X2 (X = CI, Br and AcO) radical species are paramagnetic and the observed EPR signals in the solid state at room temperature, with g values close to the electron free g value are proof of the semiquinonic character of the ligand. The antibacterial activity of the ligand and the metal complexes prepared were tested against four bacteria strains and compared with the activity of penicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号