首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


2.
《Comptes Rendus Chimie》2014,17(5):490-495
A new complex of [Ni3(dcp)2(H2O)10] (1) (H3dcp = 3,5-pyrazoledicarboxylic acid) has been synthesized from H3dcp and Ni(NO3)2·6H2O by hydrothermal reaction. Complex 1 has the discrete trinuclear structure. Three Ni(II) ions are bridged by two dcp3− ligands, with 10 coordinated water molecules as terminal ligands. The molecules of [Ni3(dcp)2(H2O)10] extend into three-dimensional supramolecular architectures by intermolecular O–H···O hydrogen bonds as well as π-π stacking interactions. Magnetic susceptibility measurement shows that a weak antiferromagnetic interaction is operative between nickel(II) ions and an excellent simulation of the experimental data gives D = 5.27 cm−1, J = −2.19 cm−1 and g = 2.05.  相似文献   

3.
A uranium coordination compound with pyridine-2,6-dicarboxylic acid in deionized water has been synthesized and characterized by IR, UV, XPS, and X-ray single-crystal diffraction. The crystal belongs to the monoclinic system, space group C2/c with a?=?1.8427(4)?nm, b?=?0.6886(16)?nm, c?=?1.5442(4)?nm, α?=?90°, β?=?94.082(2)°, γ?=?90°, Z?=?4, and V?=?1.9544(8)?nm3. The structure shows an eight-coordinate uranium forming a hexagonal bi-pyramidal 3-D geometry with pyridine-2,6-dicarboxylate as building units. Fluorescent studies show several strong emissions. Cyclic voltammetric measurement of the compound reveals that uranium(VI) is reduced irreversibly at E 1/2?=?927?mV with ΔE p?=?77?mV, E 1/2?=??289?mV with ΔE p?=?113?mV. The electron transfer number (n) involved in reduction processes could be calculated to be approximately two and one, which corresponded to the unusual U(VI)/U(IV) and U(IV)/U(III) couples.  相似文献   

4.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

5.
A one-dimensional coordination polymer [Co(μ 1,3-NCS)2(npdo)2] n (npdo?=?4-nitropyridine N-oxide) has been synthesized and structurally determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group of Pbcn with a?=?22.688(5)?Å, b?=?7.2636(17)?Å, c?=?10.299(2)?Å. Adjacent Co(II) ions are coordinated by two μ 1,3-SCN? bridging ligands, forming a one-dimensional chain along the c axis and the npdo coordinates to Co(II) ion as a terminal ligand. The thermal variation of the magnetic moments of the complex reflects the antiferromagnetic interaction between the bridged Co(II) ions above 20?K and the ferromagnetic transition or the strong short-range spin interaction below 20?K.  相似文献   

6.
7.
A copper complex [Cu(IDB)Cl] · 0.5[CuCl4]?·?H2O (1) (IDB?=?di(2-benzimidazolylmethyl)imine) was synthesized and its structure was determined by X-ray single crystal diffraction. In this complex, the central copper(II) ion is four-coordinate, IDB serves as a neutral tridentate chelating ligand for the tetragonal copper ion. The cyclic voltammogram of complex 1 in CH3CN gave two reversible redox waves (E 1/2,1?=??0.14?V and E 1/2,2?=?0.08?V versus SCE) which correspond to the Cu(II,?II)/Cu(I,?II) and Cu(II,?II)/Cu(II,?I) redox processes, respectively.  相似文献   

8.
A binuclear copper(II) complex [Cu2 (μ-pyo)2Br4] n (where pyo = pyridine N-oxide) has been synthesized and its structure determined by X-ray crystallography. This complex crystallizes in monoclinic, space group P21/c, with unit cell dimensions a = 11.020(3) Å, b = 10.049(3) Å, c = 7.905(2) Å, β = 110.609(3)°, and Z = 2. The structure was refined to final R = 0.0311 and wR = 0.0721 for 1302 observed reflections (I > 2σ(I)). In the complex, two Cu(II) ions are bridged by two pyo ligands and four bromides coordinate the Cu(II); the distance between the bridged Cu(II) ions is 3.261 Å. The variable-temperature (4–300 K) magnetic susceptibility data show that the magnetic moment is zero. Thus, there exists very strong anti-ferromagnetic coupling between the bridged binuclear Cu(II) ions. Density functional calculations yield a singlet-triplet splitting 2J = ?1355 cm?1.  相似文献   

9.
The new triply-bridged dinuclear copper(II) complexes, [Cu2(μ-O2CH)(μ-OH)2(dpyam)2](ClO4) · H2O (1), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(dpyam)2](S2O8) (2), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(bpy)2](NO3)2 (3), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(phen)2](BF4)2 · 0.5H2O (4), [Cu2(μ-O2CCH2CH3)(μ-OH)(μ-OH2)(phen)2](NO3)2 (5) and [Cu2(μ-O2CCH3)(μ-OH)(μ-Cl)(bpy)2]Cl · 8.5H2O (6) (dpyam = di-2-pyridylamine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized crystallographically and also their spectroscopic and magnetic properties have been studied. A structural classification of this type of dimers, based on the data obtained from X-ray diffraction analysis in the present work and those reported in the literature has been performed. In these complexes, the local geometry around the copper centre is generally a distorted square pyramid and distorted trigonal bipyramid with different degrees of distortion. The global geometry of the dinuclear complexes can be described in terms of the relative arrangement of the two five-coordinate environments, giving rise to different classes (A–F) of complexes. The most logical explanations have been provided for each class describing different magnetic interactions. Practically, there is a clear correlation between structural data and J values of the class B complexes. Extended Hückel calculations were performed for the present complexes 16, as well as for some other class B complexes, showing the different molecular orbitals involved in their corresponding frontier orbitals, together with their energy. The results are found to be useful for the proper interpretation and correlation of the magnetic data and the dinuclear structure of the present complexes.  相似文献   

10.
Binuclear and tetranuclear copper(II) complexes are of interest because of their structural, magnetic and photoluminescence properties. Of the several important configurations of tetranuclear copper(II) complexes, there are limited reports on the crystal structures and solid‐state photoluminescence properties of `stepped' tetranuclear copper(II) complexes. A new CuII complex, namely bis{μ3‐3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolato}bis{μ2‐3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolato}tetracopper(II), [Cu4(C11H13NO3)4], has been synthesized and characterized using elemental analysis, FT–IR, solid‐state UV–Vis spectroscopy and single‐crystal X‐ray diffraction. The crystal structure determination shows that the complex is a stepped tetranuclear structure consisting of two dinuclear [Cu2(L )2] units {L is 3‐[(4‐methoxy‐2‐oxidobenzylidene)amino]propanolate}. The two terminal CuII atoms are four‐coordinated in square‐planar environments, while the two central CuII atoms are five‐coordinated in square‐pyramidal environments. The solid‐state photoluminescence properties of both the complex and 3‐[(2‐hydroxy‐4‐methoxybenzylidene)amino]propanol (H2L ) have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong blue emission at 469 nm and H2L displays a green emission at 515 nm.  相似文献   

11.
A new binuclear copper(II) complex, [Cu21,1-N3)2(PP)2)] ? 2ClO4 (PP = 2,6-dipyrazol-1-yl-pyridine), was synthesized with double azide as asymmetric end-on bridge ligand and 2,6-dipyrazol-1-yl-pyridine as the terminal ligand. The crystal structure was determined by X-ray crystallography. Cu(II) is located in a distorted square pyramidal geometry, and azide bridges the equatorial-axial linking two Cu(II) atoms with a separation of 3.3595(11) Å. The fitting for the data of the variable-temperature (2–300 K) magnetic susceptibilities by using the Curie–Weiss law gives the Weiss temperature θ = ?7.830 K, indicating a very weak anti-ferromagnetic interaction between the bridging Cu(II) complexes.  相似文献   

12.
A dinuclear copper(II) compound, [Cu(btssb)(H2O)]2 · 4(H2O) (1), and a 1-D chain copper(II) compound, [Cu(ctssb)(H2O)] n (2) [where H2btssb is 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid and H2ctssb is 2-[(3,5-dichloro-2-hydroxy-benzylidene)-amino]-ethanesulfonic acid], were prepared and characterized. Compound 1 crystallizes in the monoclinic space group P21/c, with a = 10.109(2) Å, b = 20.473(4) Å, c = 6.803(1) Å, β = 100.32(3)°, V = 1385.1(5) Å3, and Z = 2; R 1 for 1796 observed reflections [I > 2σ(I)] was 0.0357. The geometry around each copper(II) can be described as slightly distorted square pyramidal. The CuII ··· CuII distance is 5.471(1) Å. Compound 1 formed a 1-D network through O–H ··· O hydrogen bonds and 1-D water chains exist. The 1-D chain complex 2 crystallizes in the triclinic space group P 1, with a = 5.030(2) Å, b = 7.725(2) Å, c = 17.011(5) Å, α = 92.706(4)°, β = 97.131(4)°, γ = 102.452(3)°, V = 638.6(3) Å3, and Z = 2; R 1 for 1897 observed reflections [I > 2σ(I)] was 0.0171. In 2, Cu(II) was also a slightly distorted square pyramid formed by two oxygens and one nitrogen from ctssb, one oxygen from another ctssb, and one water molecule. The complex formed a 1-D chain through O–S–O bridge of ctssb ligand. The 1-D chain further constructed a double chain through O?H ··· O hydrogen bonds.  相似文献   

13.
A new complex, [Cu2(sulfameter)4]3 · 2.5H2O (sulfameter = 4-amino-N-(5-methoxy-2-pyrimidinyl)benzenesulfonamide), has been synthesized. Its structure has been determined by single-crystal X-ray diffraction and its spectroscopic properties (EPR, IR, Raman, UV–Vis) have been analyzed. The structure presented three different dimeric units in the unit cell and the EPR spectra, characteristic of antiferromagnetically coupled dimers, revealed two magnetically different dimeric environments.  相似文献   

14.
A novel three-dimensional Mn(II) coordination polymer, {[Mn(μ1,6-dmpzdo)3]?·?(ClO4)2} n , has been synthesized with 2,5-dimethylpyrazine-1,4-dioxide (dmpzdo) as a bridging ligand and its crystal structure determined by X-ray crystallography. The complex crystallizes in a trigonal system with a space group R-3 and a?=?11.6672(14), b?=?11.6672(14), c?=?16.652(4)?Å. In the complex each Mn(II) is coordinated by six μ1,6-dmpzdo bridging ligands and each μ1,6-dmpzdo bridging ligand coordinates two Mn(II) ions, forming a three-dimensional structure. The variable temperature (4–300?K) magnetic susceptibility data gave the magnetic coupling constant 2J?=??0.30?cm?1.  相似文献   

15.
A novel one-dimensional complex, [Cd(NIT4py)2(DTB)2(H2O)2] (1), (where NIT4py is 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and DTB is 3,5-dinitrobenzoate) has been synthesized and characterized by elemental analyses, IR and electronic spectra, single-crystal X-ray diffraction and magnetic measurements. The Cd(II) ion lies in a distorted octahedral environment with two nitrogen atoms from two NIT4py ligands and two oxygen atoms from two DTB molecules in the basal plane, and two oxygen atoms from two water molecules in axial positions. [Cd(NIT4py)2(DTB)2(H2O)2] units are connected to form one-dimensional chains by intermolecular hydrogen bonds. The complex exhibits intramolecular antiferromagnetic interactions.  相似文献   

16.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

17.
The binuclear radical complex [N-hydrogenpyridinium]2[Ni(tdas)2]2 (tdas = 1,2,5-thiazole-3,4-dithiolate) has been prepared and its crystal structure determined by X-ray crystallography. In the binuclear radical complex, the two nickel ions assume a distorted pyramidal geometry and are bridged by two sulfurs of different tdas anionic ligands. ESR spectra and the theoretical calculations reveal a very strong antiferromagnetic interaction in the binuclear radical complex, leading to diamagnetic crystals. The theoretical calculations also reveal a very weak antiferromagnetic interaction between adjacent radical complexes. This study is the first to report the magnetism of a binuclear radical nickel complex with tdas as ligand.  相似文献   

18.
19.
A two-dimensional coordination polymer [Ni(μ1,3-SCN)(μ-Pheno)(CH3OH)] n (where Pheno = dehydrogen-1,10-phenanthrolin-2-ol) has been synthesized and its crystal structure determined by X-ray crystallography. Adjacent Ni(II) ions are coordinated by μ1,3-SCN? and μ-Pheno alternately forming a two-dimensional sheet structure. The fitting of the variable-temperature magnetic susceptibilities with a binuclear nickel(II) formula reveals that there is an anti-ferromagnetic interaction between the bridging Ni(II) ions with the magnetic coupling constant 2J = ?0.67 cm?1.  相似文献   

20.
A copper(II) complex of a sulfonate derivative of chrysin, 5,7-bihydroxyflavone-6-sulfonate, Cu(C15H8O7S)(3H2O), has been prepared. The complex was characterized by elemental analysis, spectroscopic measurements and single-crystal X-ray diffraction studies. It crystallizes in the monoclinic space group C2/c, with a?=?16.036(18), b?=?6.944(8), c?=?28.03(3)?Å, β?=?94.463(17)°, V?=?3112(6)?Å3, Z?=?8. In the complex, Cu(II) is five-coordinate and all donors are oxygen atoms. Hydrogen bonds and π–π stacking interactions in the crystal lead to the formation of a three-dimensional supramolecular motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号