首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine novel heteronuclear complexes of Ln(III)-Cu(II) with salicylidene tetraethylene glycol diamine (SALTTA) have been synthesized and characterized. They have the general formulae [LnCu2(SALTTA)2(NO3)3](NO3)4·3H2O (Ln=La, Pr, Nd, Sm) and [LnCu3(SALTTA)3(NO3)5]-(NO3)4·4H2O (Ln=Gd, Tb, Er, Yb, Y). The IR spectra show that vC=N in the Ln(III)-Cu(II) heteronuclear complexes are splitted up into two peaks with a far distance. It has been confirmed that oxygen atoms in oxyethylene of the ligand are not all coordinated to the central metal ions by both IR and NMR methods.  相似文献   

2.
The interaction of lanthanide(III) ions with two N3O3-macrocycles, L1 and L2, derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,2-diaminoethane has been investigated. Schiff-base macrocyclic lanthanide(III) complexes LnL1(NO3)3 · xH2O (Ln = Nd, Sm, Eu or Lu) have been prepared by direct reaction of L1 and the appropriate hydrated lanthanide nitrate. The direct reaction between the diamine macrocycle L2 and the hydrated lanthanide(III) nitrates yields complexes LnL2(NO3)3· H2O only for Ln = Dy or Lu. The reduction of the Schiff-base macrocycle decreases the complexation capacity of the ligand towards the Ln(III) ions. The complexes have been characterised by elemental analysis, molar conductivity data, FAB mass spectrometry, IR and, in the case of the lutetium complexes, 1H NMR spectroscopy.  相似文献   

3.
The synthesis and characterization of lanthanide(III) complexes with the Schiff-base hydrazone, o-hydroxyacetophenone-7-chloro-4-quinoline, (HL) are reported. The complexes were characterized by different physicochemical methods: mass spectrometry, 1H NMR, 13C NMR, and IR, UV-visible, molar conductance and magnetic studies. They have the stoichiometry [Ln(L)2(NO3)]·nH2O where Ln = La(III), Pr(III), Nd(II), Sm(III), Eu(III) and n = 1–3. The spectra of the complexes were interpreted by comparison with the spectrum of the free ligand. The Schiff-base ligand and its metal complexes were tested against one stain Gram +ve bacteria (Staphylococcus aureus), Gram ?ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited high antimicrobial activities  相似文献   

4.
Twelve coordinate lanthanide (III) complexes with the general composition [Ln L3Xn(H2O)n] where Ln = Pr(III), Sm(III), Eu (III), Gd (III), Tb (III), Dy (III), X = Cl?1, NO3 ?2, n = 2–7, and L is 1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)prop-2-en-1- thiosemicarbazone have been prepared. The lanthanide complexes (5) were derived from the reaction between 1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)prop-2-en-1-thiosemicarbazone (4) with an aqueous solution of lanthanide salt. Chalcone thiosemicarbazone ligand (4) was prepared by the reaction of [1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)]prop-2-enone (chalcone) (3) with thiosemicarbazide in the presence of hot ethanol. All the lanthanide-ligand 1:3 complexes have been isolated in the solid state, are stable in air, and characterized on the basis of their elemental and spectral data.

Thiosemicarbazone ligands behave as bidentate ligands by coordinating through the sulfur of the isocyanide group and nitrogen of the cyanide residue. The probable structure for all the lanthanide complexes is also proposed. The chalcone thiosemicarbazone ligands and their lanthanide complexes have been screened for their antifungal and antibacterial studies. Some of the synthesized lanthanide complexes have shown enhanced activity compared with that of the free ligand.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

5.
The complex-formation of lanthanide(III) elements with D-penicillamine have been investigated in acidic and neutral media. The macroscopic protonation constants of the ligand and the formation constants of [Ln.Pen]+, [Ln.Pen2]?, [Ln.Pen.OH] and [Ln.Pen.(OH)2]? complexes were determined from pH-metric data using the BEST computer program. Elemental analyses of the solid complexes indicate formation of 1?:?1 metal?:?ligand species. The binding sites in the complexes with the possible role of –COO?, –NH2 and –SH groups in the coordination have been discussed using infrared data. The complexes decompose in four steps as shown by their t.g. and d.t.a. analyses. A mechanism of decomposition is proposed which is supported by mass spectral data.  相似文献   

6.
Summary Metal ion complexes of the thiosemicarbazone, 3-piperidinyl-3-thiocarboxylic acid-2-[1-(2-pyridyl)ethylidene]hydrazide (HLpip) have been prepared and spectrally characterized. HLpip coordinates both as the deprotonated ligand (i.e., pyridylN, azomethineN, and thione sulphur) and the neutral ligand (i.e., pyridylN and azomethineN) with the sulphur possibly weakly coordinating in [Ni(HLpip)2](BF4)2. All three preparative cobalt(II) salts yielded cobalt(III) cationic complexes. The nickel(II) and copper(II) chloride salts gave [M(Lpip)Cl] solids while complexes involving the neutral ligand were prepared with the corresponding bromide salts. Significant differences in the spectral properties of the various complexes are observed when compared to other thiosemicarbazones prepared from 2-acetylpyridine.  相似文献   

7.
Abstract

The solution phase coordination chemistry associated with 1:1 and 1:2 complexes of lanthanide ions with S-carboxymethoxysuccinic acid (CMOS) has been studied by spectroscopic means. The Tb(III) luminescence intensities and lifetimes were found to be sensitive towards the solution phase properties, as were the circularly polarized luminescence spectra of these complexes. It was found that below pH 6, Ln(CMOS) complexes were monomeric in nature and contained an average of 6 molecules of coordinated water. Above neutral pH, the Ln(CMOS)2 complexes became self-associated into hydroxy-bridged, oligomeric species. The Ln(CMOS)2 complexes were found to be oligomeric at all pH values, with ligand bridging taking place below neutral pH and hydroxy bridging taking place above neutral pH.  相似文献   

8.
A series of europium(III) and terbium(III) complexes of three 1,4,7‐triazacyclononane‐based pyridine containing ligands were synthesized. The three ligands differ from each other in the substitution of the pyridine pendant arm, namely they have a carboxylic acid, an ethylamide, or an ethyl ester substituent, i.e., these ligands are 6,6′,6″‐[1,4,7‐triazacyclononane‐1,4,7‐triyltris(methylene)]tris[pyridine‐2‐carboxylic acid] (H3tpatcn), ‐tris[pyridine‐2‐carboxamide] (tpatcnam), and ‐tris[pyridine‐2‐carboxylic acid] triethyl ester (tpatcnes) respectively. The quantum yields of both the europium(III) and terbium(III) emission, upon ligand excitation, were highly dependent upon ligand substitution, with a ca. 50‐fold decrease for the carboxamide derivative in comparison to the picolinic acid (=pyridine‐2‐carboxylic acid) based ligand. Detailed analysis of the radiative rate constants and the energy of the triplet states for the three ligand systems revealed a less efficient energy transfer for the carboxamide‐based systems. The stability of the three ligand systems in H2O was investigated. Although hydrolysis of the ethyl ester occurred in H2O for the [Ln(tpatcnes)](OTf)3 complexes, the tripositive [Ln(tpatcnam)](OTf)3 complexes and the neutral [Ln(tpatcn)] complexes showed high stability in H2O which makes them suitable for application in biological media. The [Tb(tpatcn)] complex formed easily in H2O and was thermodynamically stable at physiological pH (pTb 14.9), whereas the [Ln(tpatcnam)](OTf)3 complexes showed a very high kinetic stability in H2O, and once prepared in organic solvents, remained undissociated in H2O.  相似文献   

9.
Structural analyses indicate that the ligand and lanthanide ions form mononuclear 10-coordinate ([Ln L2 · (NO3)2] · NO3 [Ln(III) = La, Sm, Nd, and Yb; L is chromone-3-carbaldehyde-(isonicotinoyl) hydrazone) complexes with 1 : 2 metal-to-ligand stoichiometry. DNA-binding studies show that the ligand and its lanthanide complexes can bind to calf thymus DNA via an intercalation mode with binding constants of 105 (mol L?1)?1, and the lanthanide complexes bind stronger than the free ligand alone. Antioxidant activities of the ligand and lanthanide complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro. The ligand and complexes possess strong scavenging effects, and the lanthanide complexes show stronger antioxidant activities than the ligand and some standard antioxidants, such as vitamin C.  相似文献   

10.
《Polyhedron》1986,5(4):995-998
Lanthanide perchlorate complexes with 4-N-(2′-hydroxy-1′-naphthylidene) aminoantipyrine [HNAAP(HL)] of types [Ln(L)2ClO4] (where Ln = La, Pr, Nd or Sm) and [Ln(HL)4](ClO4)3 (where Ln = Gd, Tb, Dy, Ho or Y) have been synthesized and characterized. HNAAP acts as a monovalent terdentate ligand in the complexes of the lighter lanthanides and as a neutral bidentate ligand in the complexes of the heavier lanthanides. The perchlorate group is coordinated only in the complexes of the lighter lanthanides.  相似文献   

11.
Liquid crystalline complexes of the formula [Ln(LH)3(DOS)3] have been synthesized, where Ln is a trivalent rare earth-ion (Y, La-Lu, except Pm), LH is the ligand N-octadecyl-4-tetradecyloxysalicylaldimine and DOS is the dodecyl sulphate counterion. Although the Schiff 's base ligands do not exhibit mesomorphism, the complexes do (SmA phase). The mesophase behaviour of these compounds has been investigated by polarizing optical microscopy, differential scanning calorimetry, high temperature X-ray diffraction and thermogravimetric analysis. The stoichiometry of the complexes remains constant throughout the lanthanide series.  相似文献   

12.
Summary Iron(III) complexes of a quadridentate N2S2 donor ligand, 1,2-di(o-aminophenylthio)ethane (DAPTE) and its Schiff Base with salicylaldehyde, a hexadentate N2S2O2 donor ligand,viz. 1,2-di(o-salicylaldiminophenylthio)ethane (H2DSALPTE) have been synthesised and characterised.The Schiff base ligand (1 mol) gave a dark green tri-iron(III) [Fe3(DSALPTE)(HDSALPTE)Cl3]Cl2 complex when reacted with anhydrous iron(III) chloride (1 mol). The Mössbauer data of this complex suggest the presence of three iron sites, one of which is octahedral and the other two tetrahedral. On the other hand, Fe(ClO4)3 reacted smoothly with H2DSALPTE in ethanol to give a mononuclear pseudo-octahedral complex in which the ligand functions in a dibasic hexadentate fashion. Mössbauer data suggest the presence of a low-spin-high-spin equilibrium in the solid state. The manganese(III) and cobalt(III) complexes of the Schiff base, H2DSALPTE, are also studied for the sake of comparison with the corresponding iron(III) complex. The N2S2 ligand, however, formed a low-spin pseudo-octahedral iron(III) complex. The complexes have been characterised by elemental analysis, molar conductance values, cryomagnetic data and i.r., electronic and Mössbauer spectral data.  相似文献   

13.
An aromatic polyaminocarboxylate ligand, 1-(4-aminobenzyl)ethylenediamine-N,N,N,N-tetraacetate (ABEDTA), is proposed as a complexing reagent in the pre-capillary mode so as to form kinetically inert Ln(III) complexes, meaning that no added ligand is necessary in alkaline carrier buffer solutions. In addition, highly-sensitive detection is possible through a light-absorbing moiety of an aminobenzyl group in the ligand. The fine-tuning of the electrophoretic mobilities of the Ln-abedta complexes is successfully achieved by adding an auxiliary carbonate ion ligand which alters the charge-to-size ratio of the complexes through fast exchange equilibria in a carrier buffer. In fact, all of the complexes are detectable with very similar analytical sensitivity and acceptable resolution (except for Ln=Sm, Eu, Gd) by using NaOH-borate carrier buffer solution at pH 12.35 with 20 mM of Na2CO3. A typical detection limit for Tb(III) ion (to 3) is as low as 0.94 M, which translates to an absolute amount of 9.4 fmol in a 1.0×10–8 dm-3 (10 nL) injection.  相似文献   

14.
The ability of lanthanide(III) ions to form stable complexeswith three different macrocyclic ligands, L1 , L2 and L3 , has been investigated.The Schiff base macrocycle L1 and its corresponding reduced ligand L2 arederived from 2,6-bis(2-formylphenoxymethyl)pyridine and diethylentriamine;the reduced ligand L3 is derived from 2,6-diformylpyridine and N,N-bis(3-aminopropyl)methylamine. Lanthanide nitrate complexes of L1 and L2 have beenprepared by direct reaction between each ligand and the appropriate hydrated lanthanidenitrate; attempts to obtain the corresponding perchlorate complexes have been unsuccessful.All nitrate complexes of L1 give the expected [1:1, Ln:L1 ] stoichiometry; however, complexes obtained with L2 show a [2:1, Ln:L2 ] stoichiometry. Finally, complexation reactions with L3 have been carried out in order to investigatethe coordination capability of this small and flexible ligand towards the Ln(III) ions.  相似文献   

15.
Complexes of Cr(III) and Mn(II) with N′,N″-bis(3-carboxy-1-oxopropanyl) 2-amino-N-arylbenzamidine (H2L1) and N′,N″-bis(3-carboxy-1-oxophenelenyl) 2-amino-N-arylbenzamidine (H2L2) have been synthesized and characterized by various physico-chemical techniques. The vibrational spectral data are in agreement with coordination of amide and carboxylate oxygen of the ligands with the metal ions. The electronic spectra indicate octahedral geometry around the metal ions, supported by magnetic susceptibility measurements. The thermal behavior of chromium(III) complexes shows that uncoordinated nitrate is removed in the first step, followed by two water molecules and then decomposition of the ligand; manganese(II) complexes show two waters removed in the first step, followed by removal of the ligand in subsequent steps. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. The thermal stability of metal complexes has been compared. X-ray powder diffraction determines the cell parameters of the complexes.  相似文献   

16.
The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid–liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA)2(A)] and [Ln(CMPO)(AHA)2(A)], where Ln?=?Nd or Eu and A represents the DEHP? anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A)3] complexes when CMPO is added to n-dodecane solutions of the LnA3 compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).  相似文献   

17.
The synthesis of a new series of cationic monoporphyrinates with “light” lanthanide ions is reported. The meso-tetrakis(4-pyridyl)porphyrin, (tpyp)H2, was used as the tetrapyrrole ligand, and the metallation reaction with the lanthanide ions in acetyl-acetonato form, leading to Ln(tpyp)acac, where Ln = Sm, Eu, Gd and Tb, was carried out. The cationic monoporphyrinates, Ln(tmepyp)acac, were synthesized via the corresponding Ln(tpyp)acac. These complexes are freely soluble in aqueous and non-aqueous solutions, like MeOH, H2O or N,N-dimethylformamide. Their spectroscopic properties in water and DMF solutions are reported. All the complexes were characterized on the basis of their UV-vis, IR and ESR data. No ESR spectra were obtained for cationic porphyrins in DMF for Sm, Eu and Tb, while the spectra of Gd(tmepyp)acac in DMF exhibits smaller ΔHpp (103.1 G) among the spectra of GdIII complexes. The unexpected broad signal of Eu(t-mepyp)acac, ΔHpp = 126.9 G, in H2O is discussed in terms of the formal oxidation state +2 for the central ion.  相似文献   

18.
Lanthanum(III) and praseodymium(III) complexes of the type [Ln(L)Cl(H2O)]2 (Ln = La(III) or Pr(III); LH2 = dithiosemicarbazone ligands derived from piperazine dithiosemicarbazide and benzaldehyde, 4-nitrobenzaldehyde, and 2-methoxybenzaldehyde) have been synthesized in methanol in the presence of sodium hydroxide. The complexes have been characterized by elemental analyses, molecular weight, molar conductance, electronic absorption, IR, and 1H and 13C NMR spectral studies. Nephelauxetic ratio, covalency parameter, and bonding parameter for these complexes have also been calculated. Thermal studies of the complexes have been carried out using TG, DTG, and DSC techniques. Kinetic parameters, such as apparent activation energy and order of reaction, were determined by the Coats-Redfern graphical method. The heats of reaction for different reaction steps were calculated from DSC curves. The article was submitted by the authors in English.  相似文献   

19.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-di-aminomethylphenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-di-amino-methylphenanthroline (L2) were synthesized and fully characterized by 1H NMR and elemental analysis. The binding ability of L1 and L2 to metal ions such as M(II) (M = Cu, Zn, Co and Ni) and Ln(III) (Ln = La, Nd, Sm, Eu, and Gd) has been investigated by potentiometric titration in aqueous solution and 0.1 mol dm−3KNO3 at 25.0 ± °C. In view of the structure of L1 and L2, mononuclear metal complexes can be formed in solution. The stability constants of binary complexes of ligands L1 and L2 with metal ions M(II) and Ln(III) have been determined respectively and further discussed.  相似文献   

20.
Solid complexes of lighter lanthanide nitrates with N,N′-dinaphthyl-N,N′-diphenyl-3,6-dioxaoctanediamide (DDD), Ln(NO3)3(DDD) (Ln = La---Nd, Sm) have been prepared in non-aqueous media. These complexes have been characterized by elemental analysis, conductivity measurements, IR spectra, electronic spectra and TG-DTA techniques. In all the complexes, DDD and NO3 are coordinated to the lanthanide ions as tetradentate and bidentate ligands, respectively. The differences in the IR and electronic spectra between these complexes and lanthanide nitrate complexes with N,N,N′,N′-tetraphenyl-3,6-dioxaoctanediamide (TDD) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号