首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepta- and octa-dentate ligands N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L1) and N,N′-bis(2-aminobenzyl)-1,10-diaza-18-crown-6 (L2), respectively, form stable mononuclear Mn(II) complexes. Spectrophotometric titrations performed in acetonitrile solution indicate the formation of mononuclear Mn(II) complexes with both ligands, and no evidence for the formation of binuclear complexes was obtained. The optimal architecture of L1 allows it to impose the less usual pentagonal bipyramidal geometry on the Mn(II) guest, and the X-ray crystal structure of [Mn(L1)](ClO4)2 shows that the Mn(II) ion is deeply buried in the receptor cavity, coordinated to the seven available donor atoms, with the perchlorate anions remaining outside the metal coordination sphere. In spite of its higher denticity, the receptor L2 is unable to form the expected binuclear complexes. The X-ray crystal structure of [Mn(L2)](NO3)2 consists of the [Mn(L2)]2+ cation and nitrate anions involved in hydrogen-bonding interactions with the aniline groups. In [Mn(L2)]2+ the metal ion is also placed in the crown hole, but as a result of the large size of the macrocyclic cavity only six of the eight available donor atoms of the receptor form part of the Mn(II) coordination sphere, with the Mn(II) ion found in a distorted octahedral coordination environment.  相似文献   

2.
Complex [Zn2(bimb)2(mal)2(H2O)2]·4H2O (1) (mal=OCOCH2COO) was obtained by reaction of bidentate ligand 4,4′-bis(imidazole-1-ylmethyl)biphenyl (bimb) with zinc(II) salt of malonate, while the reaction of the same metal salt with 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (titmb) gives another novel complex [Zn2(titmb)2(mal)][mal]·12H2O (2). The structures of these complexes were determined by X-ray crystallography. The results revealed that 1 is a cyclic dinuclear complex in which the malonate groups act as terminators and prevent further aggregation, while 2 is a 2D honeycomb network in which each independent 2D sheet contains two sub-layers bridged by the malonate groups and complex 2 also contains free malonate as a counteranion connected to the 2D layer by C-H?O hydrogen bonds. The entirely different structure and topology of complexes 1 and 2, on the one hand, indicates that the nature of organic ligands affected the structures of assemblies greatly, and on the other, reveals the versatility of the malonate which can act as a bridging and/or blocking ligand.  相似文献   

3.
Two cadmium complexes, {[Cd(a-ptt)(ptt)]·H2O} n (1) and [Cd(a-Hmtt)2(SO4)H2O]·CH3OH (2), have been prepared based on 4-amino-3-(4-pyridine)-5-mercapto-1,2,4-triazole (a-Hptt) and 4-amino-3-methyl-5-mercapto-1,2,4-triazole (a-Hmtt), respectively. In 1, amino-triazole ligand a-Hptt can partly be deaminated and transformed into 3-(4-pyridine)-5-mercapto-triazole (Hptt) under hydrothermal conditions. X-ray diffraction analysis reveals that 1 exhibits an unusual 2-D lampshade-type layer structure in which the amino ligand a-ptt and the deamination ligand ptt display exo-tridentate bridging and bidentate bridging, respectively. Complex 2 is mononuclear and further assembled into a 3-D supramolecular architecture via non-covalent interactions. Complexes 1 and 2 were characterized by elemental analyses, IR, and thermogravimetric analyses. Furthermore, solid-state luminescent properties of 1 and 2 have also been investigated.  相似文献   

4.
5.
Two dinuclear oxalato-bridged zinc(II) complexes, [Zn2(bbma)2(μ24-ox)](ClO4)2 (1) and [Zn2(ntb)2(μ22-ox)](ClO4)2·4CH3OH (2), containing tridentate and tetradentate polybenzimidazole ligands were synthesized, where bbma is bis(benzimidazol-2-yl-methyl)amine and ntb is tris(2-benzimidazolylmethyl)amine. They were characterized by single-crystal X-ray diffraction, elemental analysis, IR, and fluorescence spectroscopy. Zinc(II) complexes in 1 and 2 are five-coordinate in distorted trigonal bipyramidal geometry. Oxalate bridges two zinc(II) ions as a bis-bidentate chelate in 1, while bis-monodentate in 2. The Zn?Zn distances are 5.318(1)?Å for 1 and 7.1295(5)?Å for 2, respectively. 1-D chain structures are formed in 2 by intermolecular hydrogen bonds. The solid state fluorescence spectra have been studied for 1 and 2.  相似文献   

6.
Four oxovanadium(V) complexes of heterocycle based ditopic ligands PyPzOAP (N-[amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PyPzOAPz (N-[amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PymPzOAP (N-[amino(pyridin-2-yl)methylidene]-1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-1H-pyrazole-3-carbohydrazonic acid) and PyPzCAP (5-methyl-1-(pyridin-2-yl)-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) and a binuclear (di-μ-oxo) oxovanadium(V) complex of the ligand PymPzCAP (1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) have been investigated. The ligands act as uninegative NNO tridentates donors for the VO2+ ion exhibiting their monotopicity. The ligands show varying emission properties due to the presence of fluophoric groups like 1-(2-pyridyl)pyrazole or 1-(2-pyrimidyl)pyrazole. The vanadium(V) complexes show fluorescence quenching with respect to the used ligands to a varying extent. The complexes were characterized by UV-Vis, IR, cyclic voltammetry and X-ray crystallography.  相似文献   

7.
Synthesis of a Robson type macrocyclic ligand [H4L](ClO4)2 (1) obtained on condensation of 2,6-diformyl-4-methylphenol and 2,2′-dimethyl-1,3-diaminopropane, template synthesis of a dinuclear lead(II) complex [PbII2L(NO3)2] (2), synthesis of a dinuclear zinc(II) complex [ZnII2L(NO3)(H2O)](ClO4) (3) through metal substitution reaction and synthesis of another dinuclear zinc(II) complex [ZnII2L(H2O)2](ClO4)2·(H2O)2 (4) obtained directly from 1 are described in the present study. Crystal structure determinations of 1 and 3 have been carried out. Both the compounds 1 and 3 crystallize in the orthorhombic system with the space groups Fdd2 and P21212, respectively. Spectrophotometric and spectrofluorometric titrations of 1 with triethylamine as well as with zinc(II) acetate are also reported.  相似文献   

8.
The reaction of succinamic acid (H2sucm) with Ca(NO3)2·4H2O yielded compounds [Ca(Hsucm)(NO3)(H2O)]n (1) and [Ca(Hsucm)2]n (2). The succinamate(-1) ligand presents two new ligation modes and coordinates through the two carboxylato and the amide O-atoms, thus bridging three CaII ions which assemble into zig-zag 1D chains in 1 and 2D networks in 2. Intermolecular hydrogen bonding interactions in the crystal structures of 1 and 2 result in overall 3D framework structures. Both compounds have been characterized by IR and 1H NMR spectroscopy, and their thermal decomposition was monitored by TG/DTG and DSC measurements. The structural comparison of 1 and 2 with known lanthanide(III) succinamate(-1) complexes reveals differences in the coordination mode of the ligand and in the coordination number of the metal ions; the biological relevance of these differences is discussed.  相似文献   

9.
Two pyrazole-based polydentate ligands, 1,3-bis(5-methyl-3-phenylpyrazol-1-yl)-propan-2-ol (Hmppzpo) and 1,3-bis(5-methyl-3-p-isopropylphenylpyrazol-1-yl)-propan-2-ol (Hmcpzpo), have been synthesized. A third ligand, 1,3-bis(3,5-dimethylpyrazol-1-yl)-propan-2-ol (Hdmpzpo), has been synthetically modified. Seven new M(II) coordination compounds of general formula M2L2X2 (M?=?Zn, Ni; X?=?NO3 or ClO4; L?=?dmpzpo, mppzpo or mcpzpo) or MLX (M?=?Pd; L?=?dmpzpo; X?=?Cl) were synthesized and structurally characterized by elemental analysis and FT-IR analysis. The crystal structures of [Zn2(μ-dmpzpo-O,N,N′)2(NO3)2]?·?2H2O (1?·?2H2O), [Ni2(μ-dmpzpo-O,N,N′)2(CH3CN)2](ClO4)2 (2) and Pd(μ-dmpzpo-N,N′)Cl2 (4) were determined by single-crystal X-ray crystallography. The crystal structures show that complexes 1?·?2H2O and 2 are center-symmetric dinuclear compounds, with two metal ions bridged by two alkoxo groups and each metal ion with a distorted square-pyramidal environment. The palladium complex, 4, displayed square-planar coordination geometry around the Pd(II) ion with trans arrangement.  相似文献   

10.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

11.
Two cadmium complexes, {[Cd2(2,5-tda)2(ip)4]·4H2O}n (1) and {[Cd2(4,4′-obb)2(ip)2·H2O]·H2O}n (2) (2,5-tda?=?thiophene-2,5-dicarboxylic acid, 4,4′-obb?=?4,4′-oxybisbenzoic acid, ip?=?1H-imidazo[4,5-f][1, 10]-phenanthroline), were synthesized and characterized by IR, elemental analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. X-ray analysis revealed that 1 is a dinuclear complex with the 2,5-tda anion connecting two Cd ions in a μ1-η1:η0/μ1-η1:η0 coordination mode. Each dinuclear complex is further connected with neighboring complexes via hydrogen-bonding interactions. Compound 2 displays a 2-D layer structure with opened windows occupied by crystallographic water molecules. The layers are further packed via hydrogen-bonding interactions. Luminescent properties for 1 and 2 are also investigated in the solid state at room temperature.  相似文献   

12.
Self-assemblies of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and Cu(OH)2 in the presence of dicarboxylate ligands yielded four new complexes, [Cu4(bpca)4(L1)2(H2O)2]·5H2O (1), [Cu2(bpca)2(L2)(H2O)2]·2H2O (2), [Cu2(bpca)2(L3)(H2O)2]·H2O (3), and [Cu2(bpca)2(L4)(H2O)2]·3H2O (4) (bpca = bis(2-pyridylcarbonyl)amide anion, H2L1 = phthalic acid, H2L2 = succinic acid, H2L3 = maleic acid, H2L4 = acetylenedicarboxylic acid). Their structures were determined by single-crystal X-ray diffraction analyzes and further characterized by IR spectra and thermogravimetric analyzes. The five-coordinate Cu ions in 1 are bridged by phthalate to form 1-D chains, which are assembled into 3-D frameworks by extensive hydrogen bonds. Compounds 2–4 possess similar structures, built up of [Cu2(bpca)2(L)(H2O)2] (L = L2 for 2, L3 for 3, L4 for 4) and lattice molecules. The 3-D frameworks of 2–4 are completed by hydrogen bond interactions.  相似文献   

13.
By condensation of amantadine and 4-methoxysalicylaldehyde a new Schiff base HL was synthesized. A mixture of HL and zinc(II) chloride in an alcoholic medium leads to [Zn(HL)2Cl2] (1). However, the same reactants gave another different complex (ZnL2) (2) in the presence of NaOH. The two complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, and single-crystal X-ray diffraction. X-ray diffraction analysis reveals that complex 1 crystallizes in the triclinic system, Pī space group; each asymmetric unit consists of one zinc(II), two HL, and two chlorides. The tetra coordination of central zinc is attained by two chlorides and two oxygens from the Schiff base, forming a distorted tetrahedral geometry. Complex 2 crystallizes in the monoclinic system, P21/c space group; each asymmetric unit consists of one zinc(II) and two L. The tetra coordination of central zinc is attained by two nitrogens and two oxygens from the Schiff base, forming a distorted tetrahedral geometry.  相似文献   

14.
Three supramolecular complexes [Zn(HL1 )2(H2O)2(ZnCl4)2] (1), [Cu(L2 )2Cl2] (2), and [Zn(L3 )Cl2] (3) have been synthesized and characterized by single crystal X-ray diffraction analysis (L1 = 3,5-di(2-pyridyl)-4-amino-1,2,4-triazole, L2 = 3,5-di(2-pyridyl)-1,2,4-triazole, and L3 = 2-pyridinecarboxylic acid (pyridin-2-ylmethylene)-hydrazide). In 1, anion–π interactions between Cl? and the π-systems of L1 are observed and anion–π, hydrogen bonding and π–π stacking interactions link the two complex units of [Zn(HL1 )2(H2O)2]4+ and [ZnCl4]2? to form a 3-D supramolecular network. In 2, π–π stacking interactions between aromatic rings of 1,2,4-triazole and pyridine rings are observed; in 3, hydrogen bonding of Cl ··· H–N and π–π stacking interactions between parallel pyridine rings of L 3 are observed. The mechanisms of rearrangement reactions of L to L1 L3 are discussed. The fluorescent properties for solid 1 and 3 are also investigated.  相似文献   

15.
Treatment of freshly precipitated Cu(OH)2?·?xH2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) with oxalic and malonic acids in methanol-water at room temperature gave [Cu(tptz)(C2O4)(H2O)]?·?4H2O (1) and [Cu(pma)(C3H2O4)(H2O)]?·?H2O (2) (pma?=?2-aminocarbonylpyridine), respectively. Reaction in the absence of any acid resulted in [Cu(bpca)(tca)]?·?2H2O (3) (bpca?=?bis(2-pyridylcarbonyl)amide anion; tca?=?2-pyridinecarboxylate anion). Complex 1 consists of [Cu(tptz)(C2O4)(H2O)] and lattice H2O molecules; the tridentate tptz ligand, bidentate oxalate dianion and an aqua ligand are bound to Cu with distorted octahedral geometry. Complex 2 is composed of [Cu(pma)(C3H2O4)(H2O)] and lattice H2O molecules; the bidentate 2-aminocarbonylpyridine ligand, a bidentate malonate dianion and an aqua ligand are coordinated to Cu with a slightly distorted square pyramidal geometry. Complex 3 consists of [Cu(bpca)(tca)] and lattice H2O molecules. Square pyramidally coordinated Cu atoms are surrounded by tridentate bpca with nitrogen donor atoms and a bidentate 2-pyridinecarboxylate anion.  相似文献   

16.
A novel ligand 2-acetyl-2-thiazoline acetylhydrazone (ATHAc) and two new chloride-bridged dimeric nickel(II) complexes containing thiazoline hydrazone derivative ligands, [{Ni(ATsc)(MeOH)}2(μ-Cl)2]Cl2 (1) (ATsc = 2-acetyl-2-thiazoline semicarbazone) and [{Ni(ATHAc)(H2O)}2(μ-Cl)2]Cl2 (2), were prepared and structurally characterized by elemental analysis, single crystal X-ray diffraction, IR and UV–Vis spectroscopy. In addition, NMR spectroscopy for ATHAc and magnetic susceptibility measurements for nickel complexes were performed. The structure of nickel(II) complexes consists of dimeric molecules in which nickel ions are bridged by two chloride ligands. The coordination geometry around each nickel ion can be described as a distorted octahedron with each nickel atom coordinated to one thiazoline nitrogen atom, one imine nitrogen atom, one carbonyl oxygen atom, one oxygen atom (from a methanol molecule in 1 and from a water molecule in 2) and two bridge chloride ligands. The variable temperature magnetic susceptibility measurements of the complexes show the ferromagnetic behaviour in the solid state (J = 5.7(2) cm−1 in 1; 6.6(3) cm−1 in 2).  相似文献   

17.
Two pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. One Co(III) and one Mn(II) complex of HL1 and one Mn(II) complex of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using pyrimidyl nitrogen, azomethine nitrogen and the thiolato sulfur atoms. In the free ligand moieties, the pyrimidine nitrogen atoms, azomethine nitrogen atoms and thione sulfur atoms are in EEE orientation to each other. During chelation, all the donor sites of the ligands are reoriented to ZEZ configuration in order to facilitate the chelation process. In all the complexes, the respective ligand molecule functions as the monoanionic tridentate one. All complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from octahedral geometry of the coordination environment were observed.  相似文献   

18.
New complexes of the general formula, [M(H2dap4NMetsc)(H2O)2](NO3)2·H2O (M = Zn2+, Cd2+; H2dap4NMetsc = 2,6-diacetylpyridinebis(4N-methylthiosemicarbazone) and [Sn((dap4NMetsc)X2] (X = Ph, Cl and I) (dap4NMetsc = the doubly deprotonated form of 2,6-diacetylpyridine bis(4N-methylthiosemicarbazone) have been synthesized and structurally characterized by a variety of physico-chemical techniques. X-ray crystallographic structure determination shows that in the zinc and cadmium complexes, the bis(thiosemicarbazone) ligand coordinates as a neutral N3S2 pentadentate chelating agent through the two azomethine nitrogen atoms, the pyridine nitrogen atom and the two thione sulfur atoms. The N3S2 donors of the ligand occupy the equatorial plane and the two aqua ligands occupy the sixth and seventh axial positions of the seven-coordinated cadmium(II) and zinc(II) ions. In the tin(IV) complexes, however, the thiosemicarbazone is coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The two apical positions of the seven-coordinate tin(IV) ion are occupied by either phenyl, chlorido or iodido ligands. In each of the complexes, the overall geometry adopted by the metal ion may be considered as a distorted pentagonal-bipyramid.  相似文献   

19.
20.
A series of octahedral manganese(II) complexes involving xanthates and N-donor ligands, [Mn(S2COiBu)2(phen)] (1), [Mn(S2COiBu)2(2,2′-bpy)] (2), [Mn(S2COnPr)2(phen)] (3), [Mn(S2COnPr)2(2,2′-bpy)] (4), [Mn(S2COMe)2(2,2′-bpy)] (5), [Mn(S2COnPr)2(4,4′-bpy)]n, and [Mn2(S2COnPr)4(4,4′-bpy)3] (6) (phen = 1,10-phenanthroline, bpy = bipyridine) was prepared. Complexes were characterized by elemental analysis, FTIR spectroscopy, TG/DSC analysis, and single-crystal X-ray diffraction. The structures are built of monomeric molecules of the complexes, except for 6 with the 4,4′-bipyridine ligand, which contains a binuclear complex and 1D polymeric zigzag chain in one crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号