首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(9):783-788
In this work, a new porphyrin, the 5,10,15,20‐tetrakis‐(2,6‐difluoro‐3‐sulfonatophenyl) porphyrinato iron(III) chloride (denoted as FeTsP) was immobilized on SiO2/Al2O3 (SiAl) coated with n‐propylpyridiniumsilsesquioxane polymer (SiPy+Cl?). The FeTsP was adsorbed on SiAl/SiPyCl by an ion exchange reaction, obtaining a modified solid, SiAl/SiPy/FeTsP, where the porphyrin complex was strongly adhered. Cyclic voltammograms of the SiAl/SiPy/FeTsP carbon paste electrode showed an irreversible response, with an oxidation peak at Epa=0.40 V and nondefined reduction peak at Epc=0.15 V (vs. SCE). These peaks were not observed for the nonmetallated porphyrin, indicating that they probably correspond to the Fe(III)/Fe(II) process. Studies made in solutions having different pH, (between pH 2 and 9) using the modified electrode showed that the peak potentials and the current density were not affect by pH changes, indicating that the iron porphyrin is very stable and strongly entrapped in the matrix. The modified electrode presented the property to electrocatalyze the eletrooxidation of hydrazine at 0.41 V (vs. SCE), at pH 7. The potentiality of the SiAl/SiPy/FeTsP electrode as a sensor for hydrazine was evaluated by the using the chronoamperometric technique. A linear response was obtained in the concentration range between 5×10?5 and 6×10?4 mol L?1 of hydrazine.  相似文献   

2.
《Electroanalysis》2003,15(21):1707-1712
Construction of a highly stable covalently attached multilayer film electrode containing iron porphyrin was achieved by UV irradiation of ionic self‐assembled multilayer films of diazo‐resins (DAR) and anionic Fe(III)tetrakis(p‐sulfonatophenyl)porphyrin (FeTSPP). The multilayer films had been characterized by UV, IR spectra and cyclic valtammetry. The electrocatalytic transformation of sulfite to SO42? by the multilayer film electrode containing FeTSPP was investigated. In 0.1 M NH4OH? NH4Cl buffer solution (pH 8.74) and 0.1 M borate buffer solution (pH 9.18) the electrocatalytic oxidation of sulfite through the multilayer film electrode can be performed. However, in acetate buffer solution (pH 4.0) the electrocatalytic reduction of sulfite by the multilayer film electrode had also good activity. The modified electrode also exhibited a fast response and good stability.  相似文献   

3.
Porphyrin nanorods (PNR) were prepared by ionic self‐assembly of two oppositely charged porphyrin molecules consisting of free base meso‐tetraphenylsulfonate porphyrin (H4TPPS42?) and meso‐tetra(N‐methyl‐4‐pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42?? SnTMePyP4+, H4TPPS42?? CoTMePyP4+, H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR‐modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at ?0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR‐modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42?? SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42?? CoTMePyP4+ H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.  相似文献   

4.
于浩  郑建斌 《中国化学》2007,25(4):503-509
A copper hexacyanoferrate modified ceramic carbon electrode (CuHCF/CCE) had been prepared by two-step sol-gel technique and characterized using electrochemical methods. The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs. SCE) in 0.050 mol·dm^-3 HOAc-NaOAc buffer containing 0.30 mol·dm^-3 KCl. The charge transfer coefficient (a) and charge transfer rate constant (ks) for the modified electrode were calculated. The electrocatalytic activity of this modified electrode to hydrazine was also investigated, and chronoamperometry was exploited to conveniently determine the diffusion coefficient (D) of hydrazine in solution and the catalytic rate constant (kcat). Finally, hydrazine was determined with amperometry using the resulting modified electrode. The calibration plot for hydrazine determination was linear in 3.0 × 10^-6--7.5 × 10^-4 mol·dm^-3 with the detection limit of 8.0 × 10^-7 molodm^-3. This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods, such as renewable surface, good long-term stability, excellent catalytic activity and short response time to hydrazine.  相似文献   

5.
Cobalt(II) inserts into 5-(4-pyridyl)-10,15,20-(3,4-dimethoxyphenyl)porphyrin (1) by reaction of the porphyrin with the cobalt(II) acetate salt in refluxing N,N′-dimethylformamide solutions. When the porphyrin and the cobalt porphyrin are reacted with PtCl2(DMSO)2 in dichloromethane at ambient temperatures the platinum complex coordinates to the peripheral pyridyl group of the porphyrin. Roughened EPG electrodes coated with the cobalt(II)–platinum(II) bimetallic porphyrin, complex (4), show a 500?mV shift in the reduction of molecular oxygen in acidic media when compared to the bare electrode. Oxidation of the bimetallic porphyrin coated electrodes at 1.20?V versus saturated calomel electrode (SCE) results in an additional shift of ca 100?mV for the reduction of molecular oxygen when compared to the bimetallic porphyrin coated electrode prior to oxidation. In addition the oxidized surface shows the ability to reduce approximately 50% of the oxygen to water and the other 50% to hydrogen peroxide according to rotating disk electrode measurements.  相似文献   

6.
In this study, the influence of the film structure was investigated on the electrocatalytic oxygen reduction at GC electrodes covered with porphyrin and metalloporphyrin rings via the diazonium modification method. For that purpose, primarily, tetraphenylporphyrin (TPP) films on GC electrode surfaces were prepared by electroreduction of in situ generated diazonium salts of 5‐(4‐aminophenyl)‐10,15,20‐triphenylporphyrin (APP) and 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin (TAPP) molecules. Next, the formation of metalloporphyrin films on the modified surfaces was accomplished through the complexation reactions of surface porphyrin rings with metal ions in the salt solutions containing Mn(II), Fe(III) and Co(II) ions. The resulting porphyrin and metalloporphyrin layers were identified with XPS and ICP‐MS. The electrochemical barrier properties of the films on GC surfaces were examined by cyclic voltammetry in K3Fe(CN)6 aqueous solution. The electrocatalytic abilities of the resulting films were also investigated for the oxygen electrochemical reduction by employing cyclic voltammetry in PBS solutions saturated with oxygen. The results showed that the oxygen reduction potentials on modified GC electrodes were shifted to less negative potentials compared to that of bare GC electrode. Also, it was obtained that the oxygen reduction reaction was more effective on the GC electrodes modified with TPP rings by using TAPP molecules than those prepared by using APP molecules.  相似文献   

7.
Ti/TiO2 indicator electrodes were prepared by plasma electrolytic oxidation (PEO) method in the tetraborate electrolyte and were used for potentiometric indication of chemical reactions of different types and for analysis of surface and industrial wastewaters on the example of potentiometric determination of alkalinity and chloride. The electrodes formed at current densities of 0.05, 0.1, 0.15 and 0.2 A/cm2 are different in composition, surface morphology and electroanalytical properties. The electrodes formed at a current density of 0.05 A/cm2 exhibit the highest pH-sensitivity and generate the highest analytical signal at the equivalence point in the acid–base and precipitation titrations. The maximum analytical signal at the equivalence point, exceeding in magnitude the analytical signal, obtained by classical Pt electrode in oxidation–reduction and complexometric titrations generates PEO layers formed at a current density of 0.05 A/cm2 and a platinum-modified nanoparticles. The results of the potentiometric titration of the surface and technogenic waters using as indicator Ti/TiO2 electrodes are comparable with the conventionally used glass electrode (to determine alkalinity) and Ag electrode (to the determine chloride) and the results of visual titration. The advantage of the obtained metal oxide systems is the ability to determine two hydrochemical parameters due to their multifunctionality and opportunity to work with a single electrode. In addition, these sensors offer some analytical characteristics such as sensitivity, good reproducibility, high mechanical stability and a simple preparation procedure.  相似文献   

8.
A carbon paste electrode was modified with 2‐(4‐Oxo‐3‐phenyl‐3,4‐dihydroquinazolinyl)‐N′‐phenyl‐hydrazinecarbothioamide, magnetic core? shell Fe3O4@SiO2/MWCNT nanocomposite and ionic liquid (n‐hexyl‐3‐methylimidazolium hexafluoro phosphate). The electro‐oxidation of hydrazine at the surface of the modified electrode was studied using electrochemical approaches. This modified electrode offers a considerable improvement in voltammetric sensitivity toward hydrazine, compared to the bare electrode. Square wave voltammetry (SWV) exhibits a linear dynamic range from 7.0×10?8 to 5.0×10?4 M and a detection limit of 40.0 nM for hydrazine. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrazine oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrazine and phenol that makes it suitable for the detection of hydrazine in the presence of phenol in real samples.  相似文献   

9.
Acidic aqueous solutions containing pyrrole and alkoxysulfonated PEDOT derivative (PEDOT‐S) were found to undergo polymerization in the absence of an external oxidizing agent. The product was a nearly black‐colored conducting hydrogel that after separation could be dispersed in water or acetone. The suspensions could be used to deposit cast films on a polycrystalline gold electrode. The polymer modified electrode showed a nearly Nernstian potentiometric response to Ag+ cations in the concentration range of 10?5–10?1 M with the slope of 54 mV/decade. The response was specific to Ag+ compared to a series of alkali and transition‐metal cations (pKAg/M>3.7).  相似文献   

10.
Nanocrystalline tin‐oxide particles were prepared as electrodes on the bases of ITO glass and AT‐cut quartz crystals (sputtered gold), respectively, and characterized for their electrochemical behavior. Experiments suggested that the SnO2 particles could induce an energy barrier to the redox reactions taking place on the electrode surface. When the amount of SnO2 exceeded ca. 10?7 mol cm?2, electrochemical activity demonstrated by the solution redox couples was entirely suppressed. Nevertheless, electrochemical impedance spectroscopic (EIS) measurements suggested that mutual communication between redox couples would still take place on the surface of SnO2. For instance, although the CV curves of Fe(CN)63‐/4‐ were completely blocked, the exchange current of Fe(CN)63‐/4‐ could still flow through the tin‐oxide modified electrode, increasing with its concentration up to 40 mM. The propagation of electrons in the SnO2 film was likely via a hopping mechanism. Electrochemical quartz microbalance (EQCM) measurements, in addition, suggested that a charge‐compensating cation (K+ or H+) uptake reaction may be induced as electrons were pumped to the Sn02 electrode, while, if electrons were removed, that could cause water desorption. Analysis based on the Frumkin adsorption isotherm showed the driving force behind the adsorption of water on SnO2 is about ?2 kcal/mol. Nonetheless, the adsorbed water might face a competitive repulsion from acetonitrile when acetonitrile was used as the electrolyte medium.  相似文献   

11.
《Electroanalysis》2003,15(10):878-884
Three glassy carbon (GC) samples: undoped and doped with boron or phosphorus, prepared at 1000 °C, were compared in respect to hydrodynamic current‐potential curves in acidic medium, cyclic voltammograms for Fe3+/2+ and Fe(CN)63?/4? and argentometric titrations of halides. Some experiments were also carried out using standard Tokai and Sigri GC and Ag electrode. It appeared that GC doped with boron and phosphorus exhibited significant increase in hydrogen evolution overpotential. As for the electrode kinetics (ΔEp criterion), no significant difference was observed between doped and undoped electrodes. In the potentiometric titrations the phosphorus‐doped electrode was advantageous over the other GC and Ag electrodes as it enabled more precise end‐point detection.  相似文献   

12.
Stable metal oxides insoluble in acidic medium have been prepared and characterized. The influence of the type of metal oxide (MOx) on the activity of Pt towards ethylene glycol oxidation in acidic medium has been examined. All modified Pt/MOx/glassy carbon (GC) electrodes exhibited a better activity compared to Pt/GC. While Pt/SnO2/GC electrode exhibited the highest activity, Pt/CeO2/GC revealed the best tolerance against poisoning process.  相似文献   

13.
《Electroanalysis》2017,29(4):1088-1094
We delineate the electrochemical preparation of cobalt hydroxide nanoflakes Co(OH)2 NFs on multi‐walled carbon nanotubes (MWCNTs) by potentiostatic methods. The preparation was done on the surface of glassy carbon electrode (GCE). The prepared nanocomposite was characterized by field emission scanning electron microscopy (FESEM), X‐ray diffraction spectroscopy (XRD) and X‐ray photo electron spectroscopy (XPS). The resulting f‐ MWCNTs/Co(OH)2 NFs modified GCE exhibits a good electrocatalytic activity for the oxidation of hydrazine in terms of decreasing over potential and increasing peak current. The modified electrode holds good in the linear range from 0.5 to 15.5 μM with limit of detection as 87.5 nM. The sensitivity of our modified electrode is calculated to be 5733 μA/mM cm‐2. Remarkably, the obtained LOD value of our sensor is very lower compared to the recommended concentration of hydrazine in water by World health organization (WHO) and Environmental protective agency (EPA). The modified electrode detects hydrazine selectively even in the presence of common interferants. Various water samples were chosen to study the practical feasibility of our sensor. The sensor also exhibited an appreciable stability, repeatability and reproducibility.  相似文献   

14.
The sluggish sodium reaction kinetics, unstable Sn/Na2O interface, and large volume expansion are major obstacles that impede practical applications of SnO2‐based electrodes for sodium‐ion batteries (SIBs). Herein, we report the crafting of homogeneously confined oxygen‐vacancy‐containing SnO2?x nanoparticles with well‐defined void space in porous carbon nanofibers (denoted SnO2?x/C composites) that address the issues noted above for advanced SIBs. Notably, SnO2?x/C composites can be readily exploited as the working electrode, without need for binders and conductive additives. In contrast to past work, SnO2?x/C composites‐based SIBs show remarkable electrochemical performance, offering high reversible capacity, ultralong cyclic stability, and excellent rate capability. A discharge capacity of 565 mAh g?1 at 1 A g?1 is retained after 2000 cycles.  相似文献   

15.
A sensitive voltammetric method was developed to determine maltose in beverage products using a carbon nanostructured screen‐printed electrode modified with CuO/glucose oxidase/maltase/SiO2 biocomposite film. Adding CuO particles was done to possess catalytic activity toward hydrogen peroxide. Electrode modified by glucose oxidase and maltase shows a good response to maltose. A well‐defined reduction peak was registered at the potential of ?0.55 V (vs. Ag/AgCl) which intensity increases linearly with the concentration of maltose ranging from 0.01 to 0.1 mmol L?1. The calculated limit of detection was 0.005 mmol L?1. Tested on the beer samples, the developed CuO/glucose oxidase/maltase/SiO2 biocomposite film covered carbon nanostructured screen‐printed electrode is showed to be a prospective sensitive element of the third generation biosensor for maltose.  相似文献   

16.
A solid‐state pH sensor was fabricated using a transparent conductive titanium oxide film on a glass substrate. The coating of the glass substrate was achieved by a novel simple chemical vapor deposition (CVD) procedure. The sensor slope was found to increase as the temperature of the solution was increased. The performance of the sensor was investigated in the pH range from 2.2 to 11.19. The E‐pH curve is linear with slope of 0.054 V at 298.15 K. This value is closed to the theoretical value 2.303RT/F (0.059 V at 298.15). The standard potential of this electrode, E°, is computed as 177.58 mV with respect to the SCE as reference electrode. Results obtained by the suggested sensor compares very well with conventional pH electrodes where the square of the correlation coefficient was 0.998. This electrode can be used as an indicator electrode in potentiometric acid‐base titration. This electrode behaves reversibly and responds to the oxide ion concentration in molten NaNO3. K2Cr2O7 was potentiometrically titrated with Na2O2 and K2CO3 as titrants in molten NaNO3 at 350°C, using the above mentioned indicator electrodes. An acidity/basicity scale of the oxyanions was established in molten NaNO3 at 350°C.  相似文献   

17.
Combining the spray pyrolysis and the sol–gel techniques gives the possibility to produce Fluorine doped Tin oxide (SnO2:F) thin films. Transparent conducting SnO2:F thin films have been deposited on glass substrates by the spray pyrolysis technique. This technique for the fabrication of SnO2:F filmsby combining sol–gel process and the spray pyrolysis technique ispresented in this paper. The Sol–gel precursors have been successfully prepared using SnCl2·5H2O and (Ac)F3. The structural, electrical, and optical properties of these films were investigated. The high resolution transmission electron microscopy (HRTEM) and selected area diffraction (SAD) patterns of SnO2:F films show that the gel films lead to a tetragonal structure. The X‐ray diffraction pattern of the films deposited at substrate temperature 530° , the orientation of the films was predominantly [110]. In addition, the surface chemical components were also examined by X‐ray photoelectron spectroscopy (XPS) showing the SnO2:F deposited with the atomic concentration ratios Sn/F 1.82:1. The minimum sheet resistance was 50 Ω and average transmission in the visible wavelength range of 300 to 800 nm was 87.25%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
pH Monitoring: a review   总被引:1,自引:0,他引:1  
Glass pH electrodes are being utilized for the measurement of pH values using liquid internal reference systems, which had been introduced on principle nearly hundred years ago and are still existing. To avoid several drawbacks in the practical usage of these kinds of chemical sensors, every effort has been made to develop an all-solid-state electrode with properties that are comparable to those of the conventional glass electrode. Metal oxide electrodes like RuO2 or IrO x are a low-priced alternative. Different concepts for substituting the conventional (aqueous) reference system by solid systems and also for changing the classical bulb shape design to a planar structured one have been proposed. A suitable reference system can be achieved by means of modification of classic reference electrodes by employing a new type of mixed conducting oxides. Both metal oxide and glass electrodes can be screen-printed on substrate materials like ceramics and plastics etc. to get miniaturized all-solid-state electrodes. pH sensors based on field effect transistors (FET) become more important. However, up to now an equivalent FET compatible reference electrode is not available.  相似文献   

19.
Ni2+掺杂Ti/SnO2-Sb2O5电极的制备及性能   总被引:1,自引:0,他引:1  
采用溶胶凝胶法制备了Ni2+掺杂的Ti/SnO2-Sb2O5电极,并通过XRD、SEM、EDS、苯酚降解、加速寿命实验等技术手段,研究了Ni2+的掺杂对电极的结构、形貌、电催化性能及稳定性的影响。结果表明:Ni2+的掺入细化了SnO2晶粒,增大了电极的比表面积,改善了电极表面的龟裂程度,提高了电极的导电性能;相对于Ti/SnO2-Sb2O5电极Ni2+的掺入将苯酚完全降解的时间缩短为原来的40%,将电极的使用寿命提高为原来的4.8倍。  相似文献   

20.
Polynuclear mixed‐valent films of cobalt oxide and cobalt hexacyanoferrate (CoOCoHCF) have been deposited on electrode surfaces from a solution of Co2+ and Fe(CN)63? ions by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance measurements demonstrate the steady growth of modified film. The effect of type of monovalent cations as well as acidity of the supporting electrolyte on film growth and redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The hybrid film electrodes showed electrocatalytic activity toward oxidation of NADH, hydrazine and hydroxylamine. The feasibility of using our modified electrodes for analytical application was also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号