首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mannich aminomethylation products have been prepared from one-pot template condensation of bis(glycinato)metal(II) complexes, M(gly)2, with formaldehyde and nitromethane. The synthesized compounds were characterized by suitable spectroscopic and analytical methods such as UV–Vis, infrared spectroscopy, elemental analysis, FAB mass, ESR, cyclic voltammetry, TGA and NMR. One of the synthesized products has been used as catalyst in the hydrogen peroxide induced degradation of pyrocatechol violet (PCV) dye.  相似文献   

3.
A novel lead(II) complex with the Schiff base benzil bis(semicarbazone), [Pb(LH2)2(NO3)]NO3 · 1/2H2O, has been synthesised and structurally characterized as well as the free ligand. The coordination number of Pb(II) is seven provided by two neutral ligand molecules and one nitrato group. The most interesting characteristic of this complex is the different behaviour observed in the two bis(semicarbazone) molecules. One of them is a N2O2 chelate ligand, whereas the other one is bonded to the lead ion only through one of the semicarbazone branches. The seventh position in the lead coordination sphere is provided by one oxygen atom from a nitrato ligand.  相似文献   

4.
A deamination process was observed after copper(II) complexation reaction with guanidinoacetic (Gaa) and glutamic acids (Glu), forming the binuclear copper(II) complex K2Cu2C16H23N7O12 · 1/2H2O (1), which was characterized by elemental analysis (CHN), spectroscopy methods (IR and EPR), powder X-ray diffraction, thermogravimetric analysis (TGA), and mass spectrometry. A new ligand, namely biguanide-1,5-diethanoate (Bge) (C6H9N5O4), was formed during complexation, probably due to the reaction between two Gaa species and the consequent release of a significant amount of ammonia, thus, characterizing the deamination process. In complex 1, Bge behaved as a tetradentated ligand, using its oxygen and nitrogen atoms as coordinating sites to both Cu(II) ions. In addition, Glu has coordinated to Cu(II) through its α-N and O atoms. Theoretical calculations of the ciscis, cistrans, and transtrans isomers of 1, considering three prototropic forms of the Bge ligand, were carried out using semi-empirical quantum mechanics (PM3/d). DFT (B3LYP and B3P86) calculations of complex 1, in which a hydrogen atom replaced the side chain of Glu, were also carried out using the 6-31G(d) basis set and the LanL2DZ effective core potential for the transition metal. Based on experimental and theoretical data, we concluded that the transtrans isomer of the binuclear copper(II) complex 1 should be the most stable, although the occurrence of other isomers, even if in minor quantities, should not be disregarded.  相似文献   

5.
Two new usymmetric bidentate Schiff-base ligands (2-pyridyl-2-furylmethyl)imine (L1) and (2-pyridyl-phenylmethyl)imine (L2) were prepared. The crystal structures of two chloro-bridged complexes [Cu2(μ-Cl)2(L1)2Cl2] (1) and [Mn (μ-Cl)2(L2)] (2) derived from the each ligand have been confirmed by single-crystal X-ray diffraction analysis. The complexes were characterized by IR, elemental analysis and spectroscopic methods. In complex 1, the two copper atoms are five-coordinate involving a square-pyramidal geometry having a N2Cl3 donor set with the two chlorine atoms bridging the two copper atoms. In complex 2, the manganese atoms are both six-coordinate. In contrast to 1, all chlorine atoms in 2 are bridging chlorides and link adjacent manganese atoms together forming 1-D infinite chains.  相似文献   

6.
The reaction of the decadentate ligand tpmen (H4tpmen?=?N,N,N′N′-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylenediamine) with MnCl2·4H2O in aqueous solution gives a homodinuclear complex [Mn2(H2O)2(tpmen)]·16H2O, which has been characterized by elemental analysis, thermal gravimetric and single-crystal X-ray diffraction analysis. The complex crystallizes in the orthorhombic system, space group Cmca, a?=?28.786(5) Å, b?=?11.5033(19) Å, c?=?14.437(2) Å, Z?=?8, R 1?=?0.0432, wR 2?=?0.0786. The tpmen ligand contains four picolinate groups, two of which bind each Mn(II) to form a dinuclear complex. The geometry around the Mn(II) is distorted octahedral with two nitrogen and two oxygen atoms from the picolinate groups and two oxygen atoms from coordinated water. The variable-temperature (2–300?K) magnetic susceptibilities shows an antiferromagnetic interaction between Mn(II) ions.  相似文献   

7.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

8.
9.
A two-dimensional complex {[Mn2(DBT)(DMF)4]·2H2O}n (DBT?=?3,6-dinitro-1,2,4,5- benzenetetracarboxylate anion; DMF?=?N,N-dimethylformamide) has been synthesized and its crystal structure determined by X-ray crystallography. The complex crystallizes in a triclinic system and the space group is P 1 with a?=?9.012(5), b?=?9.196(6), c?=?9.910(6)?Å. In the complex there exist two kinds of coordination environments for Mn(II) ions; each DBT coordinates four Mn(II) ions by its four carboxylate groups and in this way a two-dimensional sheet was constructed. The variable-temperature magnetic susceptibility of the complex was measured in the 5–300?K range and the magnetic data indicate that the magnetic interaction between the bridged manganese(II) ions displays an anti-ferromagnetic coupling.  相似文献   

10.
A one-dimensional coordination polymer [Co(μ 1,3-NCS)2(npdo)2] n (npdo?=?4-nitropyridine N-oxide) has been synthesized and structurally determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group of Pbcn with a?=?22.688(5)?Å, b?=?7.2636(17)?Å, c?=?10.299(2)?Å. Adjacent Co(II) ions are coordinated by two μ 1,3-SCN? bridging ligands, forming a one-dimensional chain along the c axis and the npdo coordinates to Co(II) ion as a terminal ligand. The thermal variation of the magnetic moments of the complex reflects the antiferromagnetic interaction between the bridged Co(II) ions above 20?K and the ferromagnetic transition or the strong short-range spin interaction below 20?K.  相似文献   

11.
A one-dimensional polynuclear copper(II) complex [Cu(μ1,6-dmpzdo)(SCN)2] n (where dmpzdo?=?2,5-dimethylpyrazine-1,4-dioxide) has been synthesized and its crystal structure determined by X-ray crystallography. The coordination geometry of Cu(II) atom is a square plane and each Cu(II) ion is connected by two μ1,6-dmpzdo bridging ligands, leading to the formation of a one-dimensional chain. ESR spectra indicate magnetic coupling between the bridged Cu(II) ions. The fitting of the variable-temperature magnetic susceptibility data (4–300?K) gave 2J?=??68.69?cm?1.  相似文献   

12.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

13.
Three dinickel(II) macrocyclic complexes [Ni2L(μ-OAc)]ClO4•X (L = L1, L2 and L3) with two 2-thiophenoethyl pendant arms, have been synthesized by cyclocondensation between N,N-bis(3-aminopropyl)-2-thiophenoethylamine and 2,6-diformyl-4-R-phenol (where R = Me, Cl and F and X = MeOH, 2MeCN and H2O, respectively), in the presence of nickel(II) ions. The complexes were characterized by elemental analysis, spectroscopic methods and X-ray diffraction techniques. The geometry around both of the Ni(II) ions in each molecule is a slightly distorted octahedral and the thiopheno groups do not coordinate to the Ni(II) ions, resulting that the complexes display contorted saddle-form configurations. The distances between the Ni?Ni centers for the complexes are 3.145, 3.171 and 3.155 Å, respectively. The influences of the substituted groups R in the benzene rings of the macrocyclic units on the structure, electrochemistry, magnetism, cleavage and antibacterial property to DNA have been investigated. The ES-MS results of the complexes confirm that [Ni2L]2+ species in methanol solution are very stable because all the peaks in ES-MS spectra contain this kind of units. The reduction potentials of the complexes shift towards anode upon increasing the drawing electronic ability of substituted groups. Magnetic measurements in the 2-300 K range indicate weak antiferromagnetism for the dinuclear Ni(II) complexes and the magnetic exchange interactions enhance with the decrease of the Ni-Ni distances. These complexes exhibit cleavage activities towards plasmid pBR322 DNA and antibacterial activities.  相似文献   

14.
15.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

16.
A new binuclear copper(II) complex, [Cu21,1-N3)2(PP)2)] ? 2ClO4 (PP = 2,6-dipyrazol-1-yl-pyridine), was synthesized with double azide as asymmetric end-on bridge ligand and 2,6-dipyrazol-1-yl-pyridine as the terminal ligand. The crystal structure was determined by X-ray crystallography. Cu(II) is located in a distorted square pyramidal geometry, and azide bridges the equatorial-axial linking two Cu(II) atoms with a separation of 3.3595(11) Å. The fitting for the data of the variable-temperature (2–300 K) magnetic susceptibilities by using the Curie–Weiss law gives the Weiss temperature θ = ?7.830 K, indicating a very weak anti-ferromagnetic interaction between the bridging Cu(II) complexes.  相似文献   

17.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

18.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

19.
On reaction of different copper(II) salts with 3,4-bis(2-pyridylmethylthio)toluene (L) having neutral tetradentate NSSN donor set in different chemical environments, two mononuclear copper(II), one dinuclear copper(I) and one dinuclear copper(II) complexes, formulated as [CuII(L)(H2O)2](NO3)2 (1), [CuII(pic)2] (2), [CuI2(L)2](ClO4)2 (3) and [CuII2(L)2Cl2](ClO4)2 (4), respectively, were isolated in pure form [where pic = picolinate]. All the complexes were characterized by physicochemical and spectroscopic methods. The product of the reactions are dependent on the counter anion of copper(II) salts used as reactant and on the reaction medium. Complexes 1 and 4 were obtained with nitrate and perchlorate copper(II) salts, respectively. On the other hand, C–S bond cleavage was observed in the reaction of L with copper(II) chloride to form in situ picolinic acid and complex 2. Dinuclear complexes 3 and 4 were separated out when copper(II) perchlorate was allowed to react with L in methanol and in acetonitrile, respectively, under aerobic condition. The X-ray diffraction analysis of the dinuclear complex 3 shows a highly distorted tetrahedral geometry about each copper ion. Complex 4 is converted to 3 in acetonitrile in presence of catechol. The spectral study of complex 4 with calf thymus DNA is indicative of a groove binding mode interaction.  相似文献   

20.
Two cadmium complexes, {[Cd(a-ptt)(ptt)]·H2O} n (1) and [Cd(a-Hmtt)2(SO4)H2O]·CH3OH (2), have been prepared based on 4-amino-3-(4-pyridine)-5-mercapto-1,2,4-triazole (a-Hptt) and 4-amino-3-methyl-5-mercapto-1,2,4-triazole (a-Hmtt), respectively. In 1, amino-triazole ligand a-Hptt can partly be deaminated and transformed into 3-(4-pyridine)-5-mercapto-triazole (Hptt) under hydrothermal conditions. X-ray diffraction analysis reveals that 1 exhibits an unusual 2-D lampshade-type layer structure in which the amino ligand a-ptt and the deamination ligand ptt display exo-tridentate bridging and bidentate bridging, respectively. Complex 2 is mononuclear and further assembled into a 3-D supramolecular architecture via non-covalent interactions. Complexes 1 and 2 were characterized by elemental analyses, IR, and thermogravimetric analyses. Furthermore, solid-state luminescent properties of 1 and 2 have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号