首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Keggin-type mono Co(II)-substituted phosphotungstate was synthesized from 12-tungstophosphoric acid and cobalt chloride tetrahydrate. The obtained complex was systematically characterized in solution as well as solid by various physicochemical techniques. A single-crystal X-ray analysis shows that the complex crystallizes in tetragonal system, P42/ncm space group with a?=?b?=?20.9860(5)?Å, c?=?10.4368(3)?Å, and Z?=?4. The crystal showed two types of disorders related by center of symmetry. Structural studies did not show the presence of Co, but the incorporation of the metal ion was proved by various spectral techniques. Spectral as well as electrochemical studies confirmed the presence of Co(II) into the lacunary position of the phosphotungstate moiety.  相似文献   

2.
Three inorganic–organic composite sandwich-type phosphotungstates [Ni(tepa)(H2O)]4H2[Ni4(H2O)2(α-B-PW9O34)2]·8H2O (1), (enH2)3[Ni2(H2O)10][Ni4(H2O)2(α-B-PW9O34)2]·en·8H2O (2) and (enH2)10[Mn4(H2O)2(α-B-PW9O34)2]2·20H2O (3) (tepa=tetraethylenepentamine and en=ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with Ni2+ or Mn2+ ions in the presence of tepa or en and structurally characterized by IR spectra, elemental analysis, thermogravimetric analysis and variable temperature magnetic susceptibility. X-ray crystallographic analyses indicate that they all contain the classical tetra-M sandwiched polyoxoanions [M4(H2O)2(α-B-PW9O34)2]10− (M=Ni2+ or Mn2+) and nickel-organoamine cations or organoamine cations work as the charge balance ions. The tetra-M clusters in 1, 2 and 3 exhibit the familiar structural type of a β-junction at the sites of metal incorporation. The study of magnetic property of 1 is indicative of a typical ferromagnetic coupling between Ni2+ cations.  相似文献   

3.
A solid acid catalyst comprising of lacunary silicotungstate and zirconia was synthesized and characterized by physicochemical techniques. Surface morphologies of support and catalyst were studied by scanning electron microscopy. Catalytic properties were evaluated for the esterification of n-butanol with acetic acid. Esterifications of sec-butanol and isobutanol with acetic acid as well as the esterification of n-butanol with different acids such as formic acid and propionic acid were carried out under optimized conditions. Catalytic activities for calcined as well as recycled catalysts were also evaluated for the esterification under optimized condition.  相似文献   

4.
A new and straightforward methodology is described for the construction of complex nitrogen-containing polycycles from substituted 1,2,4-triazines and enamines, prepared in situ from carbonyl components and allylic amines. The transformation proceeds via a pericyclic reaction cascade (inverse electron demand Diels-Alder then retro-Diels-Alder then intramolecular Diels-Alder) forming the polycyclic systems in good to excellent yield and with high diastereoselectivity in a one-pot procedure. The scope and limitations of the methodology are described as are preliminary studies to extend its synthetic utility.  相似文献   

5.
Two manganese complexes, [Mn2(tptz)2Cl4] · CH3CN (1) and [Mn(tptz(ac)(N3)(H2O)] · H2O (2) (where tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, ac = acetate anion), were synthesized and characterized by elemental analyses, infrared spectra, and UV–Vis absorption spectral analyses. The structures of both the complexes were determined by single crystal X-ray diffraction analysis. Complex 1 is binuclear with chloro-bridged manganese ions at the Mn–Mn separation of 3.777(27) Å. Each manganese center in 1 is six coordinate with three nitrogens from a tridentate tptz, three chlorides (one terminal and two bridging), adopting a centrosymmetric distorted octahedral geometry. Various hydrogen bonds form 2-D spiral structures in 1 with Mn–Mn separation of 7.421(2) Å along a-axis and 9.121(2) Å along b-axis. Complex 2 is seven coordinate with pentagonal bipyramidal geometry. The metal center coordinates to three nitrogens from tptz, two oxygens from acetate, one nitrogen from azide, and one oxygen from water. It has a 1-D layered structure, where three independent molecules are linked by uncoordinated water present in the lattice. Magnetic susceptibility in the temperature range 5–300 K for 1 shows the presence of antiferromagnetic interaction between the local high-spin manganese(II) ions with J = ?0.17 cm?1.  相似文献   

6.
Three new organic–inorganic hybrid compounds constructed from Keggin-type polyanions and transition metal complexes, [Mn(2,2′-bipy)3]1.5[BW12O40Mn(2,2′-bipy)2(H2O)]·0.25H2O (1), [Fe(2,2′-bipy)3]1.5[BW12O40Fe(2,2′-bipy)2(H2O)]·0.5H2O (2) and [Cu2(phen)2(OH)2]2H[Cu(H2O)2{BW12O40Cu0.75(phen)(H2O)}2]·1.5H2O (3), have been hydrothermally synthesized and characterized by elemental analyses, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 are isostructural and both exhibit monosupporting polyoxometalate cluster structure, each of which contains a [BW12O40]5− cluster decorated by one transition metal complex. Compound 3 contains a bisupporting polyoxometalate cluster anion where two {Cu0.75(phen)(H2O)}0.75+ fragments are supported on the polyoxometalate dimer {Cu(H2O)2(BW12O40)2}8−, this represents the first bisupporting polyoxometalate cluster based on a Keggin-type polyoxometalate dimer, which are further packed together via π–π stacking contacts into an extended 1-D chain.  相似文献   

7.
Reaction of NH4VO3 with sulfur dioxide affords the hexanuclear cluster (NH4)2(Et4N)[(V(IV)O)6(mu4-O)2(mu3-OH)2(mu3-SO3)4(H2O)2]Cl x H2O (1), and the decapentanuclear host-guest compound (Et4N)5{Cl subset [(VO)15(mu3-O)18(mu-O)3]} x 3 H2O (2). Sequential addition of magnesium oxide to an acidic aqueous solution of NH4VO3 (pH approximately 0) followed by (NH4)2SO3 resulted in the formation of either the non-oxo polymeric vanadium(IV) compound trans-(NH4)2[V(IV)(OH)2(mu-SO3)2] (3) or the polymeric oxovanadium(IV) sulfite (NH4)[V(IV)O(SO3)1.5(H2O)] x 2.5 H2O (4) at pH values of 6 and 4, respectively. The decameric vanadium(V) compound {Na4(mu-H2O)8(H2O)6}[Mg(H2O)6][V(V)10(O)8(mu6-O)2(mu3-O)14] x 3 H2O (5) was synthesised by treating an acidic aqueous solution of NH4VO3 with MgO and addition of NaOH to pH approximately 6. All the compounds were characterised by single-crystal X-ray structure analysis. The crystal structure of compound 1 revealed an unprecedented structural motif of a cubane unit [M4(mu4-O)2(mu3-OH)2] connected to two other metal atoms. Compound 3 comprises a rare example of a non-oxo vanadium(IV) species isolated from aqueous solution and in the presence of the reducing agent SO3(2-), while compound 4 represents a rare example of an open-framework species isolated at room temperature (20 degrees C). In addition to the synthesis and crystallographic studies, we report the IR and magnetic properties (for 1, 2 and 3) of these vanadium clusters as well as theoretical studies on compound 3.  相似文献   

8.
New cationic complexes [Ru(η5-C5H5)(EPh3)(L)]BF4 [L = pyridine-2-carbaldehyde azine (paa); E = P, 1; E = As, 2; E = Sb, 3] and κ1 bonded dppm complexes [Ru(η5-C5H5)(κ1-dppm)(L)]BF4 [L = paa 4; L = p-phenylene-bis(picoline)aldimine (pbp) 5] containing both group V donor and pyridyl-azine ligand are reported. The complexes were fully characterized by analytical and spectral studies. 31P NMR spectral studies suggested coordination of dppm in the complexes 4 and 5 in κ1-manner, which was further, confirmed by structural studies on the representative complex 4. Weak interaction studies revealed that inter- and intramolecular C-H?X (X = O, F, Cl, π) and π-π interactions in the complexes 1 and 4 lead to helical structures.  相似文献   

9.
A manganese(II) coordination polymer [Mn(TMB)2?·?H2O] n (1) (HTMB?=?3,4,5-trimethoxybenzoic acid) has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, powder X-ray diffraction analysis, spectroscopic (IR, solid state UV-Vis), and thermal methods. The crystal belongs to orthorhombic system, space group P212121, with cell parameters a?=?7.3001(8), b?=?11.4146(13), c?=?27.053(3)?Å, α?=?β?=?γ?=?90°, V?=?2254.3(4)?Å3, Z?=?4. In 1, TMB in two different coordination modes bridges six-coordinate manganese(II) centers forming a 1-D infinite chain coordination framework. The spectral and thermal properties of the complexes have also been studied.  相似文献   

10.
A Keggin-type polyoxometalate [SiW12O40]4? supported transition metal complex, {[Cu(py)2]4[SiW12O40]} (py?=?pyridine), has been synthesized by hydrothermal decarboxylation and characterized by elemental analyses, IR spectra, thermal stability analyses, and single-crystal X-ray diffraction. The compound is a 1-D chain containing an inorganic–organic backbone with alternating [SiW12O40]4? clusters and [Cu(py)2]+ along the c-axis, and with both three- and four-coordinate copper. The luminescence properties indicated that the emission peak is emission of pyridine, assigned to the Cu(I) to pyridine charge transfer. This air-stable Cu(I) complex can efficiently catalyze the O-arylation of both phenols and aryl halides.  相似文献   

11.
The metal coordination geometry in the active site of metalloproteins are very different from the one of small inorganic complexes, due to the inflexibility of the ligand set from amino acid side chains different from freely moving ligand set in synthesis. Using the sterically hindered 2,6-di-(p-fluorophenyl)benzoate(L) ligand, a series of mononuclear Co(II), Ni(II) and Cu(II) complexes of general formula [M(L)2(Hdmpz)2] (where, Hdmpz = 3,5-dimethyl pyrazole) have been synthesized and characterized by the variety of spectroscopic methods. A distorted octahedral geometry in case of nickel, tetrahedral geometry for cobalt and square pyramidal in copper was observed in the X-ray studies, which also revealed that the uncoordinated oxygen atom of the carboxylate group forms intramolecular hydrogen bonding with the N-H group of the coordinated 3,5-dimethylpyrazole in case of cobalt and copper.  相似文献   

12.
Two heterometallic trinuclear complexes of macrocyclic oxamide [Co(Ni L1 )2 L2 (H2O)] · 3H2O ( 1 ) and [Mn(Ni L1 )2 L2 (H2O)] · 0.5CH3OH · 1.5H2O ( 2 ) (H2 L1 = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclopentadeca‐7,13‐diene, H2 L2 = 5‐sulfosalicylic acid) were synthesized and structurally characterized by elemental analysis, IR spectroscopy, and X‐ray diffraction. Single‐crystal X‐ray analyses reveal that both the complexes contain discrete neutral trinuclear [(Ni L1 )2M L2 (H2O)] (for 1 and 2 , M = Co, Mn, respectively) moieties. The structures of 1 and 2 have oxamido‐bridged trinuclear [MIINiII2] units and consist of one‐dimensional chains formed by strong intermolecular hydrogen bonds. Furthermore, the magnetic properties of complex 1 were investigated and discussed in detail.  相似文献   

13.
Four new cobalt, manganese, and copper bis(phosphonates), [Co2{Cl2C(PO3)2}(H2O)7 · 4H2O] ( 1 ), [Co{Cl2C(PO2O(C(O)C6H5))2(H2O)5} · 2H2O{Cl2C(PO2O(C(O)C6H5))2}{Co(H2O)6}] ( 2 ), [Mn{[Cl2C(PO2O(C(O)C6H5))2](H2O)3}] ( 3 ), and [Cu{(CH2C5H5N)C(OH)(PO3H)2}2 · 4H2O] ( 4 ), were prepared by gel, liquid, and evaporation crystallisation methods. Compounds 1 – 4 were characterised by X‐ray single‐crystal diffraction, elemental analysis, infrared spectroscopy, and thermogravimetric analysis. The effects of metal and various substituted groups in bis(phosphonate) ligands on the structure formation of bis(phosphonates) were studied. In the structure of 1 , the clodronic acid ligand ( L1 ) is in bischelating bonding mode, and the dinuclear units of 1 are surrounded by two‐dimensional water cluster patterns. The hydrogen bond network of compound 1 is extended to a three‐dimensional framework when the phosphonate oxygen atoms serve as hydrogen‐bond acceptors. In complex 2 , the CoO6 octahedron shares a corner of one PCO3 tetrahedron of the dibenzoyl derivative of clodronic acid ligand ( L2 ), and forms a two‐dimensional hydrogen bonding network, which consists of [Co(H2O)6}]2+ cations, lattice water molecules and L2 ligand molecules. Compound 3 , in turn, consists of dimeric building blocks built up of PCO3 tetrahedra of the ligand L2 , which connect the corner‐sharing MnO6 octahedra and form an overall 2D structure through hydrogen bonds of coordinated and crystal water molecules and phosphonate oxygen atoms. Complex 4 is among the first metal complexes of risedronic acid ( L3 ). In compound 4 , two L3 ligand molecules chelate tridentately the CuII atom at the center of symmetry, and the monomeric units of 4 are connected to a 3D structure through hydrogen bonding of coordinated and lattice water molecules to both protonated and deprotonated phosphonate oxygen atoms and protonated nitrogen atoms in the pyridine ring.  相似文献   

14.
[Octakis(3,5-bis-trifluoromethyl-benzylthio)porphyrazinato] magnesium carrying eight (3,5-bis-trifluoromethyl-benzylthio) groups on the peripheral positions have been synthesized by cyclotetramerization of 1,2-bis(3,5-bis-trifluoromethyl-benzylthio)maleonitrile in the presence of magnesium butanolate. Its demetalation by the treatment with trifluoroacetic acid resulted in the metal-free derivative. Further reaction of this product with copper(II) acetate, zinc(II) acetate and cobalt(II) acetate have led to the metallo derivatives M = Cu(II), Zn(II), Co(II). These novel complexes were characterized by elemental analysis, together with FT-IR, 1H NMR, 13C NMR, 19F NMR, UV-vis and mass spectral data.  相似文献   

15.
Ammonolysis of reactive oxide precursors affords the vanadium(V) phase Ba(2)VO(3)N that is shown by X-ray and neutron powder diffraction and Raman spectroscopy to contain pseudotetrahedral VO(3)N(4-) anions. This is the first example of such species for the first transition series metals.  相似文献   

16.
A six-coordinate Mn(IV) complex, [Mn(H2L)2] (1) [H4L = 2-methoxy-6-(tris(hydroxymethyl)methyliminomethyl)phenol], was synthesized and characterized by elemental analysis, single-crystal X-ray crystallography, FTIR, UV–Vis electronic absorption, and EPR spectroscopy. The single-crystal structural determination reveals that the complex crystallizes in tetragonal space group P41212 and the tridentate Schiff base ligands are arranged in mer configuration chelating manganese, which exhibits as slightly distorted octahedral coordination sphere with a N2O4 chromophore. Weak hydrogen bonding interactions of uncoordinated hydroxyl groups result in a 2-D supramolecular structure. The UV–Vis electronic absorption and IR spectral data of 1 have been compared with the results obtained by employing DFT and time-dependent density functional theory calculation using B3LYP, B3PW91, and MPW1PW91 functionals, with 6-31G (d-p) and LanL2MB basis sets. The results of these calculations are functional-dependent and, among those used, B3PW91 proved to better reproduce the experimental results.  相似文献   

17.
The diffusion of ammonia vapors to the magnesium/manganese/nickel nitrate solution results in the formation of their respective metal hydroxides, while the diffusion of ammonia vapors to copper and zinc nitrate solutions results in the crystallization of layered hydroxysalts. The PXRD patterns show that highly crystalline phases of samples are obtained. Infrared spectra were used to get information on the local coordination of ions. The thermogravimetric analysis justifies the phases concluded from powder X-ray diffraction and infrared spectroscopy. This clearly demonstrates that the crystal structure is mainly dictated by the nature of the metal ion, its site selectivity and specificity under identical synthesis conditions.  相似文献   

18.
《Comptes Rendus Chimie》2003,6(5-6):565-572
The synthesis of five new coordinating tectons based on tetrathiacalix[4]arene backbone was achieved and their structure analysed and confirmed by X-ray diffraction on single crystal. All tectons were based on tetrafunctionalisation of either tetrathiacalix[4]arene or tetramercaptotetrathiacalix[4]arene derivatives by four pyridine units. The junction between the pyridine units and the calix backbone was ensured by ester or thioester groups. On the pyridine ring, either position 3 or 4, defining the location of the coordination sites, were used to connect the monodentate site to the calix framework. To cite this article: H. Akdas et al., C. R. Chimie 6 (2003).  相似文献   

19.
A new ligand, 5‐{[5‐(pyridine‐4‐yl)‐1,3,4‐oxadiazole‐2‐ylthio]methyl}quinoline‐8‐ol (K), was synthesized by base‐catalysed reaction of 5‐chloromethyl‐8‐hydroxy quinoline (CMQ) and 5‐(pyridine‐4‐yl)‐1,3,4‐oxadiazole‐2‐thiol. The obtained ligand K was characterized by 1H NMR, 13C NMR and IR spectroscopic techniques and reacted with transition metal salts to afford metal‐containing heterochelates. The structures of the synthesized heterochelates were characterized using elemental analyses, infrared spectra, electronic spectra, magnetic measurements, FAB mass spectrum and thermogravimetric analyses. The kinetic parameters such as order of reaction (n) and the energy of activation (Ea) are reported using the Freeman–Carroll method. The pre‐exponential factor (A), the activation entropy (ΔS#), the activation enthalpy (ΔH#) and the free energy of activation (ΔG#) were calculated. Heterochelates were also screened for their in vitro antibacterial activity against a range of Gram‐positive (Bacillus substilis, Staphylococcus aureus) and Gram‐negative (Escherichia coli, Serratiamarcescens) organisms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号