首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

2.
Novel penta-azamacrocyclic 21-membered [N5] ligand [L] and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been isolated and characterized. The mode of bonding and overall geometry of the complexes have been inferred through IR, MS, UV–Vis, EPR, 1H NMR spectral studies, molar conductivity, magnetic, thermal and microanalyses, On the basis of above studies, an octahedral geometry has been proposed for all complexes except Pd(II) chloride complex which adopt square planar geometry. The in vitro antitumor activity of the synthesized ligand and some selected complexes against human breast and human hepatocarcinoma cell lines (MCF-7) and (HePG2), respectively has been studied. The results show that the tested compounds are potent antitumor agents. Also the ligand and some selected complexes have been tested for their inhibitory effect on the growth of bacteria: Streptococcus pyogenes as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. The activity data show that most of the tested compounds exhibit remarkable antibacterial activity against these organisms.  相似文献   

3.
New mononuclear Fe (III), Cu (II), Ag (I), ZrO ( IV) and UO2(VI) complexes were synthesized by the reaction of metal ions with (E)-3-(2-(5, 6- diphenyl-1,2,4- triazin-3- yl)hydrazono)butan-2- one oxime. The structures of the metal complexes were characterized using analytical, spectral (infrared, electronic, 1H NMR, electron spin resonance (ESR), and mass), magnetic moment, molar conductance, thermal gravimetric analysis, and powder X-ray diffraction (XRD) measurements. All complexes have octahedral geometries except the Cu (II) complex, which has square planar geometry, and the UO2(VI) complex, in which the coordination number is seven. The ligand acts as a (neutral, monoanionic or dianionic) tridentate with N2O coordinating sites: N-azomethine, N-triazine, and O-oxime. Fluorescence spectral studies were carried out in solid state and in dimethylformamide (DMF). The kinetic parameters of the thermal decomposition stages were calculated using Coats–Redfern equations. The morphological structures of the ligand and some complexes were determined using XRD. The molecular orbital calculations were carried out for the ligand and metal complexes using the Hyperchem 7.52 program on the basis of the PM3 level. The antimicrobial activities of the ligand and its complexes were investigated towards the microorganisms S. aureus and B. subtilis as Gram-positive bacteria, S. typhimurium and E. coli as Gram-negative bacteria, C. albicans, and A. fumigatus. The ligand and its complexes showed antitumor activity against Hep G-2 cell lines, where Cu (II) and Ag (I) complexes seem to be promising as they showed IC50 values that are lower than and comparable to that of the antitumor drug doxorubicin.  相似文献   

4.
N-Benzoylthiosemicarbazide, HL, was obtained by fusion of benzoylhydrazide and ammonium thiocyanate. Reactions of HL with cobalt(II), nickel(II), copper(II), zinc(II), iron(III), cadmium(II), oxovanadium(IV), and dioxouranium(VI) in 1 : 1 molar ratio yield the corresponding complexes. The N-benzoylthiosemicarbazide may act as a neutral or monobasic bidentate ligand coordinated through NS or NO sites. The structures of the HL ligand and its complexes were identified by elemental analysis, infrared, electronic, mass, 1H-NMR, and ESR spectra as well as magnetic susceptibility and molar conductivity measurements. Different geometries were obtained for the metal complexes. The ligand and its metal complexes were investigated for antibacterial and antifungal properties. Two Gram-positive bacteria, Staphylococcus aureus and Streptococcus pyogenes, two Gram-negative, bacteria, Pseudomonas fluorescens and Pseudomonas phaseolicola and two fungi, Fusarium oxysporum and Aspergillus fumigatus, were used in this study. The metal complexes were more effective than the free ligand.  相似文献   

5.
Schiff base metal complexes of Cr(III), Co(II), Ni(II) and Cu(II) derived from 5-chlorosalicylidene-2-amino-5-methylthiazole (HL1) and 2-hydroxy-1-naphthylidene-2-amino-5-methylthiazole (HL2) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, 1H-NMR, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analyses. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data reveal that all the complexes exhibit 1:2 (metal:ligand) ratio. IR data show that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. XRD patterns indicate crystalline nature for the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.  相似文献   

6.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

7.
Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) complexes of 6-(2-phenyldiazenyl)-7-hydroxy-4-methyl coumarin (PAHC) are characterized based on elemental analyses, infrared, 1H NMR, magnetic moment, molar conductance, mass spectra, UV-Vis analysis, thermogravimetric analysis (TGA), and X-ray powder diffraction. From the elemental analyses, it is found that the complexes have formulae [M(L)2(H2O) n ] ? xH2O (where M = Cu(II), Co(II), Ni(II), Cd(II), and Zn(II), n = 0–2, x = 1–4). The molar conductance data reveal that all the metal chelates are non-electrolytes. From the magnetic and solid reflectance spectra, it is found that the structures of these complexes are octahedral or tetrahedral. The synthesized ligand and metal complexes were screened for antibacterial activity against some Gram-positive and Gram-negative bacteria.  相似文献   

8.
Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of Schiff bases derived from the condensation of sulfaguanidine with 2,4‐dihydroxy benzaldehyde ( HL1 ), 2‐hydroxy‐1‐naphthaldehyde ( HL2 ) and salicylaldehyde ( HL3 ) have been synthesized. The structures of the prepared metal complexes were proposed based on elemental analysis, molar conductance, thermal analysis (TGA, DSC and DTG), magnetic susceptibility measurements and spectroscopic techniques (IR, UV‐Vis, and ESR). In all complexes, the ligand bonds to the metal ion through the azomethine nitrogen and α‐hydroxy oxygen atoms. The structures of Pd(II) complex 8 and Ru(III) complex 9 were found to be polynuclear. Two kinds of stereochemical geometries; distorted tetrahedral and distorted square pyramidal, have been realized for the Cu(II) complexes based on the results of UV‐Vis, magnetic susceptibility and ESR spectra whereas octahedral geometry was predicted for Co(II), Mn(II) and Ru(III) complexes. Ni(II) complexes were predicted to be square planar and tetrahedral and Pd(II) complexes were found to be square planar. The antimicrobial activity of the ligands and their metal complexes was also investigated against the gram‐positive bacteria Staphylococcus aures and Bacillus subtilis and gram‐negative bacteria, Escherichia coli and Pesudomonas aeruginosa, by using the agar dilution method. Chloramphenicol was used as standard compound. The obtained data revealed that the metal complexes are more or less, active than the parent ligand and standard. The X‐ray crystal structure of HL3 has been also reported.  相似文献   

9.
A novel Schiff base ligand (H2L) was prepared through condensation of 2,6‐diaminopyridine and o‐benzoylbenzoic acid in a 1:2 ratio. This Schiff base ligand was characterized using elemental and spectroscopic analyses. A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal complexes of H2L were prepared and characterized using elemental analysis, spectroscopy (1H NMR, mass, UV–visible, Fourier transform infrared, electron spin resonance), magnetic susceptibility, molar conductivity, X‐ray powder diffraction and thermal analysis. The complexes are found to have trigonal bipyramidal geometry except Cr(III), Mn(II) and Fe(III) complexes which have octahedral geometry based on magnetic moment and solid reflectance measurements. The infrared spectral studies reveal that H2L behaves as a neutral bidentate ligand and coordinates to the metal ions via the two azomethine nitrogens. 1H NMR spectra confirm the non‐involvement of the carboxylic COOH proton in complex formation. The presence of water molecules in all reported complexes is supported by thermogravimetric studies. Kinetic and thermodynamic parameters were determined using Coats–Redfern and Horowitz–Metzger equations. The synthesized ligand and its complexes were screened for antimicrobial activities against two Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus), two Gram‐negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and one fungus (Candida albicans). Anticancer activities of the ligand and its metal complexes against human breast cancer cell line (MCF7) were investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
New series of nano‐sized bi‐homonuclear Ce (III), ZrO (II), Sn (II), Pb (II), Cr (III), Fe (III) and Cu (II) complexes with 4‐[(2,4‐dihydroxybenzylidene)amino]‐N‐(1,3‐thiazol‐2‐yl) benzenesulfonamide (H3L) were synthesized via green solid‐state method. The structural and molecular formulae of all synthesized complexes were established based on variable spectral, analytical and theoretical implementations. FT‐IR study confirms the coordination of H3L with metal ions through the Schiff base and sulfonamide centers in di‐basic tetra‐dentate mode. Thermal analysis, magnetic moment and electronic spectra are attributing to octahedral configuration around Ce (III), Cr (III) and Fe (III) centers, while with ZrO (II), Sn (II), Pb (II) and Cu (II) centers, acquired tetrahedral arrangement. TEM and XRD studies, represent the nanometer characters of most metal ion complexes. TGA curves are utilized to compute the activation thermo‐kinetic parameters over different decomposition stages applying Coats‐Redfern method. Theoretical implementation executed by Gaussian09 program exerted the structures for the best atomic orientation over whole molecules. QSAR data were achieved over Hyper Chem 8.1 program through molecular mechanics process. Docking complexes between free ligand and different protein receptors were obtained through AutoDock Tools 4.2. Antimicrobial, antifungal and antitumor activities of the metal complexes were studied in comparing with free ligand to assert their potential therapeutic uses. H3L, Ce (III), Fe (III) and Cu (II) complexes displayed high antibacterial activity near that of standard Gentamycin. Moreover, Cr (III) complex displayed highest cytotoxicity against human liver Carcinoma cell line (HEPG2).  相似文献   

11.
A series of N-substituted-4-thiocarbamoyl-5-pyrazolone derivatives (HL1-HL4) is presented as chelating agents for complexation with Fe(III), Ni(II) and Cu(II) metal ions. The synthesized pyrazolone ligands and their newly metal complexes are characterized by different spectral and analytical methods such as UV–Vis, IR, 1H NMR, 13C NMR, ESR, MS, magnetic measurement, and TGA. The spectral data reveal that ligands coordinated to metal ions in a bidentate pattern via O & N atoms of the OH group at C(5) and thiocarbamoyl (–CSNHR) at C(4) of the pyrazolone ring. Also, the analytical data suggest the stoichiometries 2:3 (M:L) for both Cu(II) & Ni(II) complexes and 1:3 for Fe(III) complexes. Besides, the normal magnetic moments values for Fe(III) complexes confirm high spin octahedral structure while the diamagnetic nature of all Ni(II) complexes is consistent with square planar geometry. However, the subnormal magnetic values for Cu(II) complexes suggest the proposal of their binuclear structures. The ESR spectra of the Cu(II) complexes support the distorted square planar geometry with a considerably strong intradimeric spin-exchange interaction. Moreover, the anticancer, antibacterial and antifungal activities are screened. Among the synthesized compounds, HL4 ligand exhibits a significant broad spectrum of action against Gram-positive (S. aureus), Gram-negative bacteria (P. vulgaris), and antifungal potency against A. fumigatus & C. albicans in comparison with gentamicin and ketoconazole drug. Such potency of HL4 could be related to the insertion of the p-chloro in the phenyl group attached to the pharmacophoric thiocarbamoyl group at C(4). Furthermore, IC50 values of two Cu(II) complexes derived from HL2 and HL3 display nearly twofold or threefold more cytotoxicity impact against three cell lines (MCF-7, HCT116 and HepG-2) compared with cis-platin as positive control.  相似文献   

12.
A compartment ligand 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol was prepared and homobinuclear phenol-bridged Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Hg(II), Fe(III), and Mn(II) complexes have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 5-chloro-3-phenylindole-2-carbohydrazide and metal chlorides in 1 : 2 : 2 ratio, respectively. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, NMR, FAB mass and ESR spectra, TGA, and powder XRD data. Cu(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes exhibit square pyramidal geometry whereas Ni(II), Mn(II), and Fe(III) complexes are octahedral. Low magnetic moment values for Cu(II), Ni(II), Co(II), Fe(III), and Mn(II) complexes show antiferromagnetic spin-exchange interaction between two metal centers in binuclear complexes. The ligand and its complexes were tested for antibacterial activity against Escherichia coli and Staphyloccocus aureus, and antifungal activity against Aspergillus niger and Candida albicans.  相似文献   

13.
Complexes of sulfamethoxydiazine with Cu(II), Zn(II), Ni(II), Cd(II), Cr(III) and Fe(III) have been synthesized and characterized on the basis of conductivity measurements, elemental analyses, UV, IR, 1H?NMR and thermal studies. It is shown that sulfamethoxydiazine behaves as a bidentate ligand, binding the metal ion through the sulfonyl oxygen and sulfonamide nitrogen. In vitro susceptibility tests of these complexes against Escherichia coli, Bacillus subtilis, Proteus vulgaris and Staphylococcus aureus were carried out. The results show that the antibacterial activities of the complexes of Zn(II), Cu(II), Cr(III) and Fe(III) are, in general, stronger than that of sulfamethoxydiazine, while the complexes of Cd(II) and Ni(II) are less active.  相似文献   

14.
Tridentate chelate complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 4-[N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl)]aminoantipyrine. Microanalytical data, UV-Vis, magnetic susceptibility, Infrared, 1H- 13C-NMR, mass, thermal gravimetric analysis and electron paramagnetic resonance (EPR) techniques were used to confirm the structures. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted octahedral geometry for the metal. EPR spectra of the copper(II) complex at 77?K confirm the distorted octahedral geometry of the copper(II) complex. The antimicrobial activities of the ligand and metal complexes against the bacteria such as Xanthomonas maltophilia, Chromobacterium violaceum, Acinetobacter, Staphylococci, Streptococci, and the fungus Candida albicans have been carried out. A comparative study of minimum inhibitory concentration values of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial and antifungal activity than the free ligand. The electrochemical behavior of copper(II) complex was studied by cyclic voltammetry. The complexes show nuclease activity in the presence of oxidant.  相似文献   

15.
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects.  相似文献   

16.

Abstract  

The coordination behaviour of a Schiff base with SNO donation sites, derived from condensation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde, towards some bi- and trivalent metal ions, namely Cr(III), Mn(II), Fe(III), Co(II) (Cl, ClO4), Ni(II) (Cl, ClO4), Cu(II), and Zn(II), is reported. The metal complexes were characterized on the basis of elemental analysis, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG, and DTA). The ionization constant of the Schiff base under investigation and the stability constants of its metal chelates were calculated pH-metrically at 25 °C and ionic strength μ = 0.1 M in 50% (v/v) ethanol–water mixture. The chelates were found to have octahedral (Mn(II)), trigonal bipyramidal (Co(II), Ni(II), Zn(II)), and tetrahedral (Cr(III), Fe(III), and Cu(II)) structures. The ligand and its binary chelates were subjected to thermal analyses and the different thermodynamic activation parameters were calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The free Schiff base ligand and its metal complexes were tested in vitro against Aspergillus flavus, Candida albicans, C. tropicalis, and A. niger fungi and Bacillus subtilis and Escherichia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.  相似文献   

17.
A new polyamidoamine metallodendrimer modified with eight 1,8-naphthalimide units was synthesized. The Cu(II) complex has been investigated by EPR spectroscopy and it has shown that 17 copper ions have involved in the dendrimer complex. To confirm the presence of metallodendrimers on the cotton surface, scanning electron microscopy characterization has been used. In vitro antimicrobial activity of the metallodendrimer against different pathogens was investigated and compared to the dendrimer ligand free of copper ions. Both dendrimers were deposited on a cotton fabric and antibacterial activity of the treated cotton samples was investigated against model Gram-positive and Gram-negative bacteria. It has been shown that the studied dendrimers reduce bacterial growth and prevent the formation of biofilms. The metallodendrimer showed stronger antimicrobial and biofilm inhibiting abilities than those of the free of Cu(II) ions ligand.  相似文献   

18.
A new Schiff base was prepared as the condensation product of the reaction of 2‐quinoline carboxaldehyde and ambroxol drug. The Schiff base ligand thus obtained (HL; trans‐4‐[(2‐(2‐quinolinoimino)‐3,5‐dibromobenzyl)amino]cyclohexanol) was further employed as a tridentate ligand for the synthesis of new complexes through reaction with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal ions. The synthesized HL and its metal complexes were characterized using various physicochemical techniques including elemental analysis, Fourier transform infrared and UV–visible spectroscopies, conductimetric and magnetic susceptibility measurements, mass spectrometry and thermal analyses. 1H NMR data indicated that complex formation was through the amino group rather than the aliphatic hydroxyl group. Thermal analysis gave an idea about the decomposition pattern of HL and its complexes. Also, it revealed the number of water molecules in the inner and outer spheres of the complexes. An octahedral geometry for all the complexes has been suggested. HL and its complexes were screened for their antimicrobial activity against various species of bacteria and fungi using the disc diffusion method. The Cr(III) complex had the highest antimicrobial activity.  相似文献   

19.
An azo derivative was synthesized by coupling diazotized 2,6‐diaminopyridine with p‐dimethyl amino benzaldehyde and this new ligand formed a series of metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) salts. These complexes were characterized on the basis of elemental analyses, molar conductance, infrared spectroscopy, UV–Vis, 1H NMR, mass spectrometry, electronic spectra, magnetic susceptibility and ESR spectral studies, conductivity measurements, thermogravimetric analyses (TG‐DTG). The molecular and electronic structure of the azo ligand was optimized theoretically and the quantum chemical parameters were calculated. The ligand and its metal complexes were subjected to X‐ray powder diffraction study. The thermal stability of the ligand and its metal complexes was examined by thermogravimetry. The ligand and its complexes were tested for their in vitro antimicrobial activity, some of the complexes showed good antimicrobial activities against some selected bacterial and fungal strains. Anticancer activity of the ligand and its metal complexes are evaluated against human cancer (MCF‐7 cells viability). Molecular docking was used to predict the binding between azo ligand and the receptors of nucleoside diphosphate kinase of Staphylococcus aureus (3Q8U) and (3HB5) which is breast cancer mutant oxidoreductase. The docking study provided useful structural information for inhibition studies.  相似文献   

20.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号