首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

2.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

3.
Abstract: Two new lead azide halides, PbN3X (X = Cl, Br), were precipitated from aqueous solutions and structurally analyzed by both X-ray single-crystal/powder diffraction and vibrational spectroscopy, in addition to density-functional theory calculations. PbN3Cl crystallizes in the monoclinic space group P21/m (no. 11) with a = 5.5039(11), b = 4.3270(9), c = 7.6576(15) Å, β = 101.28(3)° and adopts a structure with alternating layers of cations and anions. PbN3Br crystallizes in the orthorhombic space group Pnma (no. 62) with a = 7.9192(2), b = 4.2645(1), c = 11.1396(3) Å, and the cations and anions are alternating crosswise. Within PbN3Cl, a Pb2+ cation is surrounded by five azide and four chloride anions whereas, in PbN3Br, the coordination consists of five azide and three bromide anions. Both structures contain chain-like [Pb2X2]2+ units with Pb–Cl = 2.95–3.21 Å and Pb–Br = 3.03–3.38 Å, and the N3 dumbbell is capped by five Pb2+ with Pb–N = 2.79–2.91 Å in PbN3Cl and with Pb–N = 2.69–2.89 Å in PbN3Br. The infrared and Raman spectra show the typical frequencies of a slightly asymmetric N3 unit, in good agreement with DFT phonon calculation. Thermal analyses reveal PbN3Cl to be stable up to 290 °C before it explodes to yield PbCl2, metallic Pb, and gaseous N2.  相似文献   

4.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

5.
Reactions between CoO, ZnCl2 (or ZnBr2), and molten citric acid (Hcit) led to the formation of two 3d‐3d heterometallic coordination frameworks: [ZnCo(Hcit)Cl] ( 1 ) and [ZnCo(Hcit)Br] ( 2 ). X‐ray structure analyses show that both compounds 1 and 2 crystallize in the monoclinic space group P21/n [ 1 : a = 5.8699(5) Å, b = 17.7963(13) Å, c = 9.2152(8) Å, β = 106.806(4) °, Z = 4, V = 921.53(13) Å3; 2 : a = 5.909(3) Å, b = 17.798(8) Å, c = 9.302(5) Å, β = 106.374(7) °, Z = 4, V = 938.6(8) Å3]. The structures of the two compounds are almost the same except for the terminal halogen ligand. Both of them are 3D frameworks based on citric acid bridging ligands and a 1D backbone chain built of corner‐shared {CoO6} and {ZnO3Cl} polyhedra. Photoluminescence and thermal stabilities of the compounds were studied.  相似文献   

6.
Reactions of [NH4]2[MS4](M = Mo,W), CuX(X = Br, I) and PPh3 in the solid state produced four mixed-metal sulfur containing clusters {Cu3MS3X}(PPh3)3S(M = Mo, W; X = Br, I), two of which (1: M = Mo, X = I; 2: M = W, X = Br) were structurally determined. Crystals of 1 and 2 are triclinic, space group P1 (1: a = 11.895(3), b = 13.107(1), c = 20.473(2)Å, α = 74.95(6), β = 84.87(8), γ = 64.27(7)°, Z=2, V=2776.1 Å3, Rw = 0.064 for 6443 observed reflections. 2: a = 11.876 (1), b = 13.065 (2), c = 20.325(2)Å, α = 74.95(1), β= 85.39(1), γ = 64.09(1)°, Z = 2, V = 2737.3Å3, Rw = 0.055 for ·5303 observed reflections). The results of the structure determination showed that the central units of the two cubane-like cluster compounds are composed of four metal atoms and four non-metal atoms situated at alternate corners. The differences of cubane-like cluster compounds obtained from solid state reactions and from solution reactions are discussed.  相似文献   

7.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

8.

The reaction of MX2 (M = Co(II), Ni(II); X = Cl, Br) with 2-aminopyrimidine in aqueous acid yields compounds [(2-apmH)2MX4], (2-apmH)2[MX4], or (2-apmH2) [MX2(H2O)4]X2 (2-apmH = 2-aminopyrimidinium; 2-apmH2 = 2-aminopyrimidinium(2+)). All compounds have been characterized by single crystal X-ray diffraction. The compounds [(2-apmH)2MX4] with M = Co, X = Cl (1); M = Ni, X = Cl (3); and M = Ni, X = Br (4) are isomorphous and crystallize as nearly square planar MX4 units with the 2-apmH cations coordinated in the axial sites through the unprotonated ring nitrogen. (2-ApmH)2[CoBr4] (2) crystallizes as the salt with a nearly tetrahedral CuBr4 2- anion. (2-ApmH2)[NiBr2(H2O)4]Br2 (5) forms as a cocrystal of the neutral, six-coordinate nickel complex and (2-ampH2)Br2, stabilized by extensive hydrogen bonding. Crystal data (1): monoclinic, P21/c, a = 7.540(4), b = 12.954(4), c = 7.277(3) Å, β = 110.09(6), V = 667.4(5) Å3, Z = 2, Dcalc = 1.955 Mg/m3, μ = 2.079 mm-1, R = 0.0501 for [|I|≥2(I)]. For (2): triclinic, P-1, a = 7.720(2), b = 7.916(2), c = 14.797(3) Å, α = 97.264(3), β = 104.788(3), γ = 105.171(3)°, V = 825.3(3) Å3, Z = 2, Dcalc = 2.296 Mg/m3, μ = 10.715 mm-1, R = 0.0308 for [|I|≥2(I)]. For (3): monoclinic, P21/c, a = 7.595(3), b = 12.891(4), c = 7.204(3) Å, β = 111.07(3)°, V = 658.2 Å3, Z = 2, Dcalc = 1.982 Mg/m3, μ = 2.279 mm-1, R = 0.0552 for [|I|≥2(I)]. For (4): monoclinic, P21/c, a = 7.840(2), b = 13.358(4), c = 7.518(2) Å, β = 110.923(3)°, V = 938.6(3) Å3, Z = 2, Dcalc = 2.577 Mg/m3, μ = 12.18 mm-1, R = 0.0280 for [|I|≥2(I)]. For (5): orthorhombic, Pnma, a = 16.776(6), b = 11.943(4), c = 7.079(3) Å, V = 1418.2(9) Å3, Z = 4, Dcalc = 2.564 Mg/m3, μ = 12.639 mm-1, R = 0.0381 for [|I|≥2σ(I)].  相似文献   

9.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

10.
Two new layered rare earth boride halides, La2XB3 (X = Cl, Br) have been synthesized. They crystallize in the space group (No. 174) with a = 7.872(1) Å, c = 8.219(2) Å, V = 441.1(1) Å3 for the chloride, and with a = 7.834(1) Å, c = 8.440(1) Å, V = 448.6(1) Å3 for the bromide compound, respectively. The crystals of La2ClB3 are twinned resulting in an apparent symmetry P6/mmm (No. 191). In the crystal structure of La2XB3, trigonal La6 prisms are condensed into sheets in the a‐b plane, and the halogen atoms X sandwich the La double layers. The connection of B atoms which center the prisms and rectangular prism faces leads to B nets of B3, B6 and B8 rings embedded between the La atom double layers. The chemical bonding is analyzed for the well ordered bromide, and the characteristic disorder in the chloride is discussed.  相似文献   

11.
Addition of 2 equiv. of PPh3 to MnBr2 in tetrahydrofuran (THF) solution under N2 atmosphere results in the formation of Naldini salt (PPh3)2MnBr2 ( 1 ). Reaction of Complex 1 and O2, NO, and CO (with reducing agent) leads to Complex (OPPh3)2MnBr2 ( 2 ), (PPh3)2Mn(NO)Br2 ( 3 ), and (PPh3)2Mn(CO)3Br ( 4 ), respectively. Both Complexes 2 and 4 crystallize in the triclinic space group P-1 with a = 9.94 Å, b = 10.11 Å, c = 10.53 Å; α = 65.42°, β = 63.16°, and γ = 89.22° of 2 and a = 10.23 Å, b = 12.26 Å, c = 14.44 Å and α = 97.03°, β = 104.34°, and γ = 106.33° of 4 . The isoelectronic replacement of 3CO with 2NO yields the {Mn(NO)2}8 species (PPh3)2Mn(NO)2Br ( 5 ). The single crystal of 5 is in the monoclinic space group C2/c with a = 23.17 Å, b = 9.62 Å, c = 15.92 Å, and β = 114.91°. In the THF solution, Complex 5 serves as an NO source in the presence of NO trapping, Co(TPP), Co(TPP) = 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II).  相似文献   

12.
The brown crystals of [NEt4]2[Se3Br8(Se2Br2)] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraethylammonium bromide. The crystal structure of 1 has been determined by the X‐ray methods and refined to R = 0.0308 for 10433 reflections. The crystals are monoclinic, space group P21 with Z = 2 and a = 12.0393(3) Å, b = 11.8746(3) Å, c = 13.1946(3) Å, β = 96.561(1)° (123 K). In the solid state structure the anion of 1 is built up of Se3Br8 unit which consists of a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging Br atoms, and one Se2Br2 molecule which is linked to one of μ3‐bridging Br atoms. The three SeII atoms form a triangle which is almost perpendicular to the planes given by three SeBr4 moieties. The contact between the μ3Br and the SeI atom of the Se2Br2 molecule is 3.1711(8) Å and can be interpreted as a bond of the donor‐acceptor type with the μ3Br as donor and the Se2Br2 molecule as acceptor. The terminal SeII‐Br and μ3Br‐SeII bond lengths are in the ranges 2.3537(7)–2.4737(7) Å and 2.7628(7)–3.1701(7) Å, respectively. The bond lengths in coordinated Se2Br2 molecule are: SeI‐SeI = 2.2636(9) Å, SeI‐Br = 2.3387(11) and 2.3936(8) Å.  相似文献   

13.
Charge-transfer salts [Co(C5H5)2][M(dpt)2] (M = Ni and Pt; dpt = cis-1,2-diphenylethene-1,2-dithiolate) were synthesized and crystallographically characterized. [Co(C5H5)2][Ni(dpt)2] crystallizes in the monoclinic space group C2/c with a = 25, 607(3) Å, b = 9.4151(11) Å, c = 14.407(4) Å, β = 101.373(22)°, V = 3405.3(10) Å3 and Z = 4. [Co(C5H5)2][Pt(dpt)2] belongs to the triclinic space group $ {\rm P}\bar 1 $ with a = 9.4666(11) Å, b = 13.9869(12) Å, c = 14.2652(9) Å, α = 99.983(6)°, β = 90.034(7)°, γ = 109.751(7)°, V = 1747.2(3) Å3 and Z = 2. Both structures consist of ··· D+A?D+A?D+A? ··· linear chains with the local C5 axis of the eclipsed [Co(C5H5)2]+ cation parallel to the best MS4 plane of the [M(dpt)2]? anion. Magnetic susceptibility measurements show that χM T values of the complexes [Co(C5H5)2][M(dpt)2] (M = Ni, Pd, and Pt) remain nearly constant in the temperature range 15–300 K, but decrease rapidly with further decreasing of temperature, indicating weak antiferromagnetic interactions at low temperatures.  相似文献   

14.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

15.
Abstract

The triboluminescence spectra and crystal structures of 1,2-dimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (1) and 1,2,6-trimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (2) were determined. The triboluminescent maximums are similar to those of the photoluminescence. Complex 1 is centrosymmetric and the triboluminescent emission may correlate with the disorder of all S atoms, all CF3 groups and the cation. The triboluminescent activity of complex 2 may correlate with its noncentrosymmetric space group. Complex 1 crystallizes in the monoclinic space group P21/a with cell parameters a = 19.874(2) Å, b = 22.922(2)Å, c = 21.188(1)Å, β = 108.126(6)°, V = 9173(1)Å3; Z = 8; R = 0.0758 and Rw = 0.1315. Complex 2 crystallizes in the monoclinic space group Pn with cell parameters a = 11.2808(6)Å, b = 11.0199(5)Å c c = 18.4336(9)Å, β = 108.126(6)° V = 2285.28(19)Å3; Z = 4; R = 0.0347 and Rw = 0.0900. All the structures were refined by full-matrix least squares methods.  相似文献   

16.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

17.
Reactions of copper(I) halides (X = Cl, Br, I) with thiophene-2-carbaldehyde thiosemicarbazone and triphenylphosphine in 1 : 1 : 2 molar ratio yield tetrahedral mononuclear complexes, [CuX1-S-Httsc)(Ph3P)2] (X = Cl, 1; Br, 2; I, 3), characterized by elemental analysis, IR, NMR (1H, 13C, 31P), and single crystal X-ray crystallography (1). The unit cell of 1 has two independent distorted tetrahedral molecules (1a and 1b) with different bond parameters. One acetonitrile is entrapped between them. Crystal data: C86H77Cl2Cu2N7P4S4 1: triclinic, P-1, a = 12.8810(9), b = 18.5049(13), c = 18.7430(13) Å, α = 63.7130(10), β = 89.0960(10), γ = 85.5010(10)°, V = 3992.4(5) Å3, Z = 2, R (int) = 0.0314. Bond parameters: 1a, Cu(1A)–Cl(1A), 2.3803(5); Cu(1A)–S(1A), 2.3822(5); Cu(1A)–P(1A), 2.2498(5) Å; P(1A)–Cu(1A)–P(2A), 124.294(19)°; 1b, Cu(1B)–Cl(1B), 2.3975(5); Cu(1B)–S(1B), 2.3756(5); Cu(1B)–P(1B), 2.2777(5) Å; P(1B)–Cu(1B)–P(2B), 127.156(19)°.  相似文献   

18.
Reactions of lanthanoid trichlorides with sodium cyclopentylcyclopentadienyl in THFafford bis(cyclopentylcyclopentadienyl) lanthanoid chloride complexes (C_5H_9C_5H_4)_2LnCl(THF)_n (Ln=Nd, Sm, n=1; Ln= Er, Yb, n= 0). The compound [CP'_2SmCl(THF)]_2 (2) (Cp' =cyclopentylcy-clopentadienyl) crystallizes from mixed solvent of hexane and THF in monoclinic space group P_2_1/cwith a = 11.583 (3), b = 23.019(6), c = 8.227 (2), β= 90.26 (2)°, V= 2194 (1)~3, D_c= 1.59 g/cm~3.μ= 28.6 cm~(-1), F(000) = 1060, Z= 2 (dimers). Its crystal molecule is a dimer with a crystallographicsymmetry center. The central metal atom Sm is coordinated to two Cp' rings, two bridging chlorineatoms and one THF forming a distorted trigonal bipyramid. The crystal of [Cp'_2ErCl]_2 (3) belongs tothe triclinic space group P with a = 11.264 (2), b= 13.296(5), c = 14.296(6), a = 96.99 (3), β=112.47(2), γ= 102.78(2)°, V= 1865(1)~3, D_c= 1.67 g /cm~3, μ= 48.0 cm~(-1), F(000) = 924, Z = 2 (dimers).The molecule is a dimer consisting of two Cp'_2 ErCl species bridged by two Cl atoms. The centralmetal atom Er is coordinated to two Cp' rings and two bridging chlorine atoms forming a pseudo-tetrahedron. All these complexes are soluble in THF, DME, Et_2O, toluene and hexane.  相似文献   

19.
The 31P{1H}-NMR characteristics of the complexes [HgX2( 1 )] and [HgX2-(PPh2Bz)2] (X = NO3, Cl, Br, I, SCN, CN) and the solid state structures of the complexes [HgCl2( 1 )] and [HgI2( 1 )] ( 1 = 2,11-bis (diphenylphosphinomethyl)benzo-[c]phenanthrene) have been determined. The 1J(199Hg, 31P) values increase in the order CN < I < SCN < Br < Cl < NO3. The two molecular structures show a distorted tetrahedral geometry about mercury. Pertinent bond lengths and bond angles from the X-ray analysis are as follows: Hg? P = 2.485(7) Å and 2.509 (8) Å, Hg? Cl = 2.525 (8) Å and 2.505 (10) Å, P? Hg? P = 125.6(3)°, Cl? Hg? Cl = 97.0(3)° for [HgCl2( 1 )] and Hg? P = 2.491 (10) Å and 2.500(11) Å, Hg? I = 2.858(5) Å and 2.832(3) Å, P? Hg? P = 146.0(4)°, I? Hg? I = 116.9(1)° for [HgI2( 1 )]. The equation, derived previously, relating 1J(199Hg, 31P) and the angles P? Hg? P and X? Hg? X is shown to be valid for 1 .  相似文献   

20.
Abstract

The manganese complexes, [Mn(III)(Hvanpa)2(NCS)] (1) and [Mn(III)(Hvanpa)2]Cl · H2O (2), have been prepared and the crystal structure of complex 2 determined using X-ray crystallography. The monomeric complex has a six-coordinate octahedral geometry. The complex crystallizes in the triclinic space group P-1 with a = 11.446(5) Å, b = 12.782(6) Å, c = 9.023(3) Å, α = 93.92(3)°, β = 97.05(3)°, γ = 65.42(2)°, V = 1169.0(9) Å3 and Z = 2. The Mn-O and Mn-N distances in the equatorial plane are in agreement with those found for other manganese (III) Schiff-base complexes. In the axial direction, the Mn-O distances of 2.256(3) and 2.236(3) Å, respectively, are about 0.4 Å longer than those in the equatorial plane due to Jahn-Teller distortion at the d 4 manganese(III) center. In the crystal, each chloride ion is linked through hydrogen bonding with two hydrogen atoms from the coordinated hydroxyl groups at the apical site. The lattice water molecules also interact with the phenolic oxygen atoms through hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号