首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of six novel zinc (II) mono(N-heterocyclic carbene) complexes is described. 1,3-Bis(mesityl)-imidazol-2-ylidene was reacted with the zinc salts ZnX2 (X=Cl, CH3COO, PhCOO, and PhCH2COO) to yield the corresponding monomeric Zn-NHC complex ZnCl2(NHC)(THF) (1) and dimeric [Zn(OOCCH3)2(NHC)]2 (2), [Zn(OOCPh)2(NHC)]2 (3), [Zn(OOCCH2Ph)2(NHC)]2 (4) (NHC=1,3-bis(mesityl)-imidazol-2-ylidene). Reaction of 1 with 2 equivalents of silver trifluoromethanesulfonate yielded monomeric Zn(O3SCF3)2(NHC)(THF) (5), reaction of 1 with sodium {[R(+)-α-2-(1-phenyl-ethylimino)-methyl]-phenolate} yielded monomeric ZnCl(OC6H4-2-CHN(CHPhCH3)(NHC) (6). Compounds 1, 4-6 were structurally characterized by X-ray analysis. Selected compounds were investigated for their activity in the copolymerization of carbon dioxide with cyclohexene oxide as well as in the ring-opening polymerization of cyclohexene oxide and ε-caprolactone.  相似文献   

2.
Three bisbenzimidazolium salts, 3,3-(alkane-1,n-diyl)bisbenzylbenzimidazolium dibromide/dihexafluorophosphate (1a/b–3a/b) (where alkane?=?ethane, propane or butane and n?=?2, 3, or 4), were synthesized. The bromide salts were subsequently used as precursors to prepare their respective Ag(I)-NHC complexes via in situ deprotonation method. The successful formation of all bisbenzimidazolium salts and complexes were proved by elemental analysis, 1H-NMR, 13C-NMR and FT-IR analyses. From single-crystal X-ray diffraction analyses, 4 has been established as a binuclear complex with the molecule arranged as in trans-conformation. Salts 1b3b and Ag(I)-NHC complexes 46 were then screened for their antibacterial potential against E. coli (ATCC 25922) and S. aureus (ATCC 12600). All the bisbenzimidazolium salts do not show any activity against both bacteria while 4 exhibits the highest activity against both bacteria in all methods followed by 5 and 6.  相似文献   

3.
A series of symmetrically n ‐alkyl‐substituted mono benzimidazolium salts with steady increase in n ‐alkyl chain length have been prepared by stepwise N ‐alkylation resulting in salts ( 1 – 8 ). The mono N‐heterocyclic carbene (NHC)–Ag(I) complexes ( 9 – 16 ) derived from the respective salts were readily accessible by in situ deprotonation using Ag2O. All the salts and the complexes were characterized using Fourier transform infrared, 1H NMR, 13C NMR and elemental analyses. Furthermore, the structures of salts 3 and 7 and complex 16 were elucidated using X‐ray crystallography, which established that this mono NHC–Ag(I) complex has a linear bis‐carbene arrangement (C2–Ag). The proligands and the respective Ag(I) complexes were studied for their in vitro anticancer potential against human colon cancer cell line (HCT‐116) using 5‐fluorouracil as a standard. From the IC50 values of all the tested compounds, it can be postulated that there is an influential relationship between the increase in chain length of the wingtip n ‐alkyl groups and the anticancer potential. The proligands 4 – 8 and their respective complexes 12 – 16 with long n ‐alkyl chain lengths (n  = 6–10) showed better IC50 values (0.3–3.9 μM) than the standard drug with the complexes displaying markedly better antiproliferation activity against HCT‐116 cell line than the respective proligands and the standard drug (IC50 = 10.2 μM).  相似文献   

4.
Abstract

The interaction of the benzimidazolium salt with Ag2O in dichloromethane to prepare novel Ag(I)-N-heterocyclic carbene complexes has been carried out at room temperature for 48?h in the absence of light. The obtained complexes were identified and characterized by 1H and 13C NMR, FT-IR and elemental analysis techniques. In addition, it has been found that some of the complexes are antimicrobially active and show higher activity than the free ligand. Probably metal chelation affects significantly the antimicrobial behavior of the ligands. The minimum inhibitory concentration of the complexes was determined. The results indicated that these complexes exhibit antimicrobial activity.  相似文献   

5.
A new series of N‐heterocyclic carbene (NHC) ligand precursors ( 1 and 2 ) with their [Ag(I)(NHC)2]PF6 complexes ( 3 and 4 ) and [ClAu(I)(NHC)] complexes ( 5 and 6 ) are reported. Complexes 5 and 6 were synthesized via transmetalation reaction using either 3 or 4 and AuCl(SMe2) as reactants, respectively. All the synthesized compounds were fully characterized using elemental analyses and Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. In the crystal structures of 3 , 5 and 6 , the Ag(I) and Au(I) ions are in a linear geometry. The entire structure of 3 is stabilized by significant π–π interactions, while the structures of 5 and 6 are stabilized with the presence of aurophilic interactions between the adjacent Au(I) ions as well as CH–π or π–π interactions. From photoluminescence studies, complexes 5 and 6 show dual‐emission characteristics. The higher‐energy fluorescence originates from 1XLCT mixed with 1MLCT, while the lower‐energy phosphorescence is ascribed to 3XLCT and 3MLCT with small contribution of 3ILCT, as evidenced by density functional theory (DFT) and time‐dependent DFT calculations of the modelled molecules.  相似文献   

6.
Complexes 1–4, [Ru(L)(bpy)2]PF6, where bpy = 2,2′-bipyridine; HL = 3-methylpyridine-2-carboxylic acid (HL1), 6-methylpyridine-2-carboxylic acid (HL2), 5-bromopyridine-2-carboxylic acid (HL3) and 6-bromopyridine-2-carboxylic acid (HL4), were synthesized and characterized. The electrochemical character of the complexes was investigated by cyclic voltammetry revealing two reversible reduction waves in the negative range of potentials, most likely due to a reduction of the bipyridine moiety. Cytotoxicity studies by MTT assay for 72 h of drug action revealed that 2–4 exhibited moderate activity in cervical human tumor cells (HeLa). Complex 2 exhibited low activity in colon cancer LS-174 cells (180 ± 10), while all complexes were devoid of activity in lung cancer A549 and non-tumor MRC-5 cells, up to 200 μM. Combinational studies of the most active complex 2, with pharmacological modulators of cell redox status, L-buthionine-sulfoximine (L-BSO) or N-acetyl-L-cysteine (NAC), showed that when L-BSO potentiated, 2 induced a sub-G1 peak of the cell cycle in the HeLa cell line. UV–vis and cyclic voltammetry were performed in order to investigate the binding mode of 2 to DNA and suggested intercalation for the complex–DNA interaction.  相似文献   

7.
Two gold(I) complexes of the (NHC)AuX type bearing a triazole‐based N‐heterocyclic carbene (NHC) ligand (1‐tert‐butyl‐4‐(4‐methylphenyl)‐3‐phenyl‐1H‐1,2,4‐triazol‐4‐ium‐5‐ylidene) and various halide ligands (X = Br, I) were synthesized and characterized in solution using NMR spectroscopy as well as in the solid state using X‐ray diffraction techniques. The cytotoxic properties of both compounds and the precursor, (NHC)AuCl, were screened against a panel of human tumour cell lines including liver cancer (HepG2), cervical cancer (HeLa S3) and leukaemia (CCRF‐CEM, HL‐60) and compared to cisplatin and auranofin. It was found that the activities of the chloro and bromo derivatives were generally superior to that of cisplatin and slightly less effective compared to auranofin, except for HepG2 cells where auranofin was not as effective. In addition, the ability to induce membrane phosphatidyl serine externalization as a hallmark of apoptosis in CCRF‐CEM leukaemic cells was investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

9.
The synthetic, spectroscopic, and biological studies of some new palladium(II) and platinum(II) complexes derived from biologically active sulfur donor ligands 1H-indol-2,3-dione benzothiazoline (Bzt 1 H) and 5-nitro-1H-indol-2,3-dione benzothiazoline (Bzt 2 H) have been described. The reactions were carried out in 1:2 molar ratios. The authenticity of the benzothiazolines and their complexes has been established on the basis of elemental analyses; molecular weight determinations; and IR, 1 H NMR, 13 C NMR, and UV spectral studies. Based on IR and 1 H NMR spectral studies, a square-planar structure has been assigned to these complexes. Studies were conducted to assess the comparative growth inhibiting potential of the synthesized complexes against the benzothiazolines for a variety of fungal and bacterial strains. The studies demonstrate that the ligands and complexes possess antimicrobial properties. Further, it was noted that the growth-inhibiting potential of the complexes is greater than the parent benzothiazolines.  相似文献   

10.
《Mendeleev Communications》2022,32(1):123-125
The synthesis, structure and properties of copper(II) perchlorate complexes with antipyrine (AP), [Cu(AP)4(H2O)](ClO4)2 and [Cu(AP)5](ClO4)2, are described and compared with those of alternative compounds containing different AP ligands.  相似文献   

11.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Chelating biscarbene ligands increase the stability of metal-organic catalyst systems. The catalytic activities of seven structurally different platinum(II)-bis-NHC-complexes in the hydrosilylation of alkenes have been investigated and compared with the catalytic activity of the Karstedt catalyst and of a highly active platinum(0)-NHC-complex. It is shown that a fine-tuning of the catalytic activity of the platinum(II)-bis-NHC-complexes is possible. The synthesis of a platinum(II)-bis-NHC-complex with similar activity, but additional advantages compared to the Karstedt catalyst, is reported. The solid state structure of 1,1-[Bis(3,3′-(4-methoxyphenyl)-1,1′-1H-imidazolium-2,2′-ylidene)methanediyl]platinum(II)-dichloride is presented.  相似文献   

13.
Diiodido- (6a/6b) and dichloridoplatinum(II) complexes (7a/7b) with fluorescent ligands 2-[(2-aminoethyl)amino]ethyl-2-(methylamino)benzoate (5a) and 2-amino-1-(aminoethyl)ethyl-2-(methylamino)benzoate (5b) were prepared and characterized by elemental analysis, ESI-MS analysis, fluorescence spectrometry, as well as 1H, 13C, and 195Pt NMR spectroscopy. All compounds have been tested against A2780 ovarian cancer, A549 lung carcinoma, and HT-29 colon cancer cell lines using sulforhodamine-B assay. The activity increased from ligand precursors, diiodido- to dichloridoplatinum(II) complexes, except against HT-29 cell line where diiodido and dichlorido expressed similar activity. These compounds enter the tumor cells and emit a bright fluorescence at ca. 470 nm, mainly targeting nuclei.  相似文献   

14.
The synthesis and characterisation of a homologous series of monodentate benzimidazolium salts, 14 and their mononuclear silver(I)–NHC (where NHC = N-heterocyclic carbene) complexes, 58, are reported. The benzimidazolium salts were prepared from the N-alkylation of 1-methyl-benzimidazole with alkyl halides of varying carbon chain lengths. The mono silver(I)-NHC complexes, 58, were prepared by the reaction of the benzimidazolium salts with Ag2O. All the synthesised compounds were fully characterised by 1H-nuclear magnetic resonance (1H-NMR), 13C-NMR and fourier-transform infrared (FTIR) spectroscopy. The molecular structures of compounds 3·PF6, 4·PF6, 7 and 8 were elucidated through single-crystal X-ray diffraction analyses. We postulate that the attachment of long alkyl chains to the heterocyclic core of 1-methyl benzimidazole could induce mesophase formation. The liquid crystalline behaviour of the benzimidazolium salts was investigated by polarised optical microscope and differential scanning calorimetry. Salts 3 and 4 were found to be thermotropic liquid crystals which exhibited a smectic A phase. However, upon complexation with silver(I) ions, all the Ag(I)–NHC complexes are found to be non-mesogenic.  相似文献   

15.
A new series of platinum(II) complexes based on thione ligands with general formula [Pt(thione)4]X2 (X??=?Cl?, NO3?) has been synthesized and characterized using CHNS elemental analysis, infrared, 1H and 13C solution-state NMR as well as 13C and 15N solid-state NMR spectroscopy, and X-ray crystallography. The spectroscopic methods confirm the coordination of Pt(II) with thiocarbonyl groups via sulfur of the thione ligands. The X-ray structures showed a distorted square planar geometry for 1, [Pt(MeImt)4]Cl2 (MeImt = N-Methylimidazolidine-2-thione) while the hydrogen bonding interactions in 7, [Pt(iPrImt)4](NO3)2·0.6(H2O) induce a bent see-saw distortion relative to the ideal square planar geometry. The in vitro cytotoxicity studies showed that 2, [Pt(EtImt)4]Cl2 is generally the most effective, a two-fold better cytotoxic agent than cisplatin and carboplatin against MCF7 (human breast cancer).  相似文献   

16.
Two new heteroleptic Pd(II) dithiocarbamates (1 and 2) have been synthesized by reaction of equimolar quantities of palladium(II) chloride, sodium 4-(3-methoxyphenyl)piperazine-1-carbodithioate, and appropriate substituted triphenylphosphines. The synthesized complexes have been characterized by their physical, spectral (IR, 1H, 13C, and 31P NMR), and X-ray crystallographic data. Complexes 1 and 2 showed square-planar geometry both in solution and solid states. The crystal packing of both complexes revealed similar 3-D-supramolecular networks comprised of 1-D chains. However, the nature and strength of various non-covalent interactions of these networks were slightly different. The DNA interaction studies of the complexes have been carried out by UV–visible spectroscopy to evaluate their anticancer potential. The study suggested intercalative interaction with 2.402 × 104 and 2.713 × 103 M?1 binding constants, respectively. The complexes have also been evaluated for their anticancer activity against HeLa cell line. Both complexes showed higher activity with IC50 values much lower (22.176 and 26.166 μM for 1 and 2, respectively) than the standard cisplatin (78.075 μM). Furthermore, the complexes induced stronger DNA fragmentation as investigated by DNA ladder assay for apoptosis. Our findings suggested that the anticancer action of these compounds stems from their interaction with DNA leading to DNA damage and apoptosis. The excellent activity of 1 and 2 deserves to be a focus for further research and in vivo studies.  相似文献   

17.
The caffeine-derived N-heterocyclic carbene (NHC) complex [Pt(II)(C^N)(NHC)Cl] (C^N = 2-phenylpyridine), 4 has the opposite stereochemistry and a shorter Pt-C(carbene) bond compared to that of an analogous benzimidazole-derived N,N-heterocyclic carbene (NNHC) Pt complex 2. These suggest a lower trans influence of pyridyl N compared to cyclometallated carbon and an increased Pt-NHC π-backbonding because of decreased π-donation resulting from conjugation to the electron deficient pyrimidine of caffeine. Complex 4 has a lower emission quantum yield (Φ) and is blue-shifted into the green region of the visible spectrum relative to non-carbene Pt(II) cyclometalated complex 5.  相似文献   

18.
Substituted heterocyclic (isatin) appended thiosemicarbazone ligands (L1L3) are synthesized by condensation of substituted isatin molecule with N(4)-phenyl-3-thiosemicarbazide in good yields. The palladium(II) complexes are synthesized from ligands (L1L3) and PdCl2, with a general formula [PdCl(X-C15H10N4OS)] where X?=?5-chloro (1), 5-bromo (2), and 5-nitro (3). Both analytical and spectroscopic methods have been used for the analysis and characterization of the synthesized compounds. The antimicrobial activity results observed that complexes, 1 and 2 have registered potent antibacterial activity against B. subtilis and K. pneumoniae and also complex 2 has shown good antifungal activity against the micro organisms. The antioxidant activity analysis revealed that the complex 3 showed significant activity with IC50 values 7.24?±?0.09?µM. Moreover, the in vitro antiproliferative activity results suggested that complex 3 exhibited high activity against HeLa cell line compared with the standard with the IC50 value 16.52?±?1.08?µM. The docking results correlate well.  相似文献   

19.
Copper(II) and palladium(II) complexes with 15-membered asymmetric 5,9-dihydro-2,4,10,12-tetramethyl-1,5,9,13-monobenzotetraazacyclo[15]tetradecine have been synthesized and characterized. The electrochemical behaviors of the complexes showed a reduction and two one-electron irreversible oxidation waves in given potential ranges due to the metal ion and macrocycle ring, respectively. The electrocatalytic reduction of dioxygen on glassy carbon electrodes electropolymerized by such 15-membered and 14-membered tetraazaannulene complexes occurred at 160–280 mV (versus SCE), less negative than on the bared one at pH 7.0. The catalytic activities of the copper(II) complexes in the oxidation of p-Xstyrene (X = OCH3, CH3, H, F, Cl) were higher than those of the palladium(II) ones. The structures of the 15-membered copper(II) and palladium(II) complexes were determined using the X-ray diffraction method.  相似文献   

20.
Trinuclear Ag(I) (1) and dinuclear and mononuclear Zn(II) isonicotinate (2 and 3) complexes were prepared and characterized by X-ray crystallography, elemental analysis, IR spectroscopy, and thermal analysis. Single-crystal analysis of the Ag(I) complex reveals two different monodentate carboxylate coordination modes, protonated and deprotonated, respectively. IR spectra showed correlations between isonicotinate coordination modes and Δ(νas???νs)IR values. In addition, the hydrogen bonds significantly influence a position of carboxylate absorption bands. Moreover, IC50 and MIC data for bacteria, yeasts, and filamentous fungi were determined and the binding of Ag(I) and Zn(II) complexes to calf thymus DNA was investigated using electronic absorption, fluorescence, and CD measurements. Biological tests showed that the Ag(I) complex is more active than commercially used Ag(I) sulfadiazine against Escherichia coli. The fluorescence spectral results indicate that the complexes can bind to DNA through an intercalative mode. The Stern–Volmer quenching constants for investigated complexes obtained from the linear quenching plot are in the range of 1.67 × 104–3.42 × 104 M?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号