首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new series of organotin(IV) complexes of aniline derivatives, R2SnL2 and R3SnL [where R = Me, n-Bu, n-Oct, and Ph], have been synthesized by the reaction of ligand acid with respective organotin halides in the presence of triethylamine as base or dioctyltin oxide using a Dean–Stark trap for the removal of water under reflux conditions. Experimental details for the preparation and characterization, including elemental analysis, IR, semi-empirical study, multinuclear NMR (1H, 13C, and 119Sn spectra and EI mass spectral studies) of all reported complexes are provided. The IR data indicate that in both di- and triorganotin(IV) carboxylates, the ligand moiety ?COO acts as a bidentate group in the solid state. Multinuclear NMR data show that triorganotin complexes exhibits a four-coordinated geometry, while diorganotin(IV) complexes show a coordination number greater than four, probably five or six, in solution state.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

2.
Fe2(CO)9 and R2P(S)P(S)R2 (R = Et, n-Pr, n-Bu, Ph) react to form two types of cluster complexes Fe3(CO)93-S)2 (1), Fe2(CO)6(μ-SPR2)2 (2A)–(2D), [2A, R = Et; 2B, R = n-Pr; 2C, R = n-Bu; 2D, R = Ph]. The complexes result from phosphorus–phosphorus bond scission; in the former sulfur abstraction has also occurred. The complexes have been characterized by elemental analyses, FT-IR and 31P-[1H]-NMR spectroscopy and mass spectrometry.  相似文献   

3.
Di‐ and triorganotin(IV) carboxylates, RnSn(OCOC(R2)=CHR1)4–n (n = 2 and 3; R = Me, Et, n‐Bu, Ph; R1 = 3‐CH3O‐4‐OHC6H3, R2 = C6H5) were prepared by reacting the corresponding organotin(IV) chloride with the silver salt of the (E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐phenylpropenoic acid. The title compounds were investigated and characterized by elemental analysis, infrared (FT‐IR), multinuclear (1H, 13C, 119Sn) NMR, and mass spectrometry, and possible structures were proposed. The complexes and ligand acid ( HL ) have been evaluated in vitro against various bacteria and fungi. The results noticed during the biocidal activity screenings proved their in vitro biological potential. They were also tested for cytotoxicity.  相似文献   

4.
以间苯二甲酰肼、取代水杨醛和有机锡前体化合物进行一锅溶剂热法反应,合成了5个双(取代水杨醛)间苯二甲酰腙有机锡配合物m-Ph (CONH-N=CH (o-O) PhR1)(SnR22:R1=Naphth,R2=Cy (1); R1=3-t-Bu,R2=n-Bu (2); R1=5-F,R2=Ph (3); R1=4-Cl,R2=Ph (4); R1=3-t-Bu,R2=Ph (5)。经元素分析、红外光谱、(1H、13C和119Sn)核磁共振谱表征,并用X射线衍射方法确证了配合物1~5的晶体分子结构。配合物1~4为三斜晶系P1空间群,配合物5为单斜晶系P21空间群。中心锡与配位原子组成五配位畸形三角双锥构型。将水杨醛酰腙链与有机锡配位形成远离中心苯环的构型称为"反式",将与中心苯环取向相同的构型称为"顺式"。通过C1-C2或C4-C8单键旋转,中心苯环上的2个配位链发生构型翻转。配合物1形成"反-反"式构型,配合物2形成"顺-顺"式构型,配合物345形成"顺-反"式构型。荧光研究表明,配合物具有发光性能,特别是配合物14的有机溶液具有很强的荧光性能。  相似文献   

5.
Organotin complexes have been synthesized by refluxing 2-mercapto-5-methyl benzimidazole with R2SnCl2/R3SnCl (R = Me, n-Bu, Ph) in 1:1 molar ratio in the first step. In the second step, synthesized organotin(IV) complexes were treated with CS2 and R2SnCl2/R3SnCl/PdCl2 to yield homo- and heterobimetallic complexes. The composition of the synthesized complexes, the bonding behavior of the donor groups, and structural assignments were studied by elemental analysis and different spectral techniques, including IR and multinuclear NMR (1H, 13C). The IR data shows bidentate nature of the ligand which is also confirmed by semiempirical study, while NMR data confirms the four-coordinated geometry in solution. The free ligand and its respective homo- and heterobimetallic complexes were screened in vitro against a number of microorganisms to assess their biocidal properties. The biological activity data show that complexes exhibits significant antibacterial and antifungal activities as compared to ligand with few exceptions.  相似文献   

6.
Four new chiral triorganotin(IV) carboxylates, [(R3Sn)(O2C13H17)] n (R?=?Me 1, Ph 2), [(R3Sn)(O2C13H17)] (R?=?n-Bu 3), and [(R3Sn)(O4C9H9)] n (R?=?Me 4), have been synthesized by reaction of (S)-(+)-2-(4-isobutyl-phenyl)propionic acid and (R)-(+)-2-(4hydroxyphenoxy)propionic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. The complexes have been characterized by elemental analyses, FT-IR, NMR (1H, 13C, and 119Sn) spectra, and X-ray crystallography diffraction analyses. Structural analyses show that 1 has a 1-D infinite chiral zigzag chain structure. Complexes 2 and 4 have a 1-D spring-like chiral helical chain with a channel, while 3 is a monomer. Antitumor activities of 14 have been studied.  相似文献   

7.
The diorganotin(IV) and triorganotin(IV) derivatives R2SnA (R = Me, n-Pr, n-Bu, n-Oct) and (R3Sn)2A [R = Me, Ph, cyclohexyl (Cyh); A = an anion of diphenic acid] have been prepared and characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies. Tetrahedral tin forms a part of a diphenate cyclic ring in the diorganotin complexes with unidentate carboxylates, which have further been used for the synthesis of cyclic acid anhydrides. The soluble dinuclear triorganotin complexes (Me, Ph) possess symmetrically bonded carboxylates while the less soluble compound (Cyh3Sn)2A has two asymmetrically bonded carboxylates. All have a trigonal bipyramidal structure with R3Sn units remote from each other.  相似文献   

8.
Two modes of reactivity of N-silylphosphoranimines have been utilized to prepare the title compounds containing either B–N=P or Si–N=P–N–B linkages. First, silicon-nitrogen bond cleavage reactions of the N-silylphosphoranimines, Me3SiN=PMe(R)OCH2CF3 (1: R=Me, 2: R=Ph), with various chloroboranes gave the new N-borylphosphoranimines, Ph(Me2N)B–N=PMe2OCH2CF3 (2) and [(Me3Si)2N](Cl)B–N=PMe2OCH2CF3 (10). In other cases, however, the expected B–N=P products were unstable and cyclic phosphazenes [Me(R)P=N]3,4 were obtained. Second, deprotonation-substitution reactions of the aminophosphoranimines, Me3SiN=P(R)Me–N(R)H, were used to prepare a series of novel (borylamino)-phosphoranimines, Me3SiN=P(R)(Me)–N(R)–B(NMe2)2 (18: R=Me, R=t-Bu; 19: R=R=Me; 20: R=Ph, R=t-Bu; 21: R=Ph, R=Me) and Me3SiN=PMe2–N(t-Bu)–B(Ph)X (22: X=NMe2, 23: X=OCH2CF3). All of the new boron–nitrogen–phosphorus products were fully characterized by multinuclear NMR (1H, 13C, and 31P) spectroscopy and elemental analysis.  相似文献   

9.
Some new tri- and diorganotin(IV) complexes of the general formula, R3Sn(H2L) and R′2Sn(HL) [where R = Me, n-Pr, n-Bu and Ph; R′ = Me, n-Bu, Ph and n-Oct; H3L = Schiff base (abbreviated as tren(4-Me-5-ImH)3) derived from condensation of tris(2-aminoethyl)amine (tren) and 4-methyl-5-imidazolecarboxaldehyde (4-Me-5-ImH)] have been synthesized. The coordination behaviour of Schiff base towards organotin(IV) moieties is discussed on the basis of infrared and far-infrared, 119Sn Mössbauer and multinuclear (1H, 13C and 119Sn) magnetic resonance (NMR) spectroscopic studies. Thermal studies of all of the synthesized organotin(IV) complexes have been carried out using TG, DTG and DTA techniques. The residues thus obtained from pyrolysis of the studied complexes have been characterized by X-ray powder diffraction analysis and IR. The newly synthesized complexes have been tested for their anti-inflammatory activity and toxicity (LD50).  相似文献   

10.
New organotin(IV) compounds containing the carboxylate ligand 2,3-methylenedioxybenzoic acid (HL) have been synthesized with the general formula R2SnL2 (R = Me, Et, n-Bu, Ph and n-Oct) and R3SnL (R = n-Bu). All compounds have been studied in the solution state by multinuclear NMR (1H, 13C and 119Sn) by using the non-coordinating solvent and also in solid sate by FTIR, mass spectrometry and X-ray crystallography. Spectroscopic data have shown that methylenedioxy moiety does not coordinate with tin atom and the coordination site is actually -COO group, as is proved by X-ray structure determination. The solid state structure of compound (2) has been determined by X-ray crystallography which shows that the complex (2) has distorted octahedral geometry. These complexes have been evaluated in vitro against crown gall tumor and antibacterial activity. Interesting results were noticed during the bio-activity screenings, which proved their in vitro biological potential and possible use as drugs.  相似文献   

11.
Organotin(IV) thiocarboxylates R2SnL2 (R = Me: 1: Ph: 2)/R2(Cl)SnL (R = n-Bu: 3; Ph: 4)/R3SnL (R = Me: 5; n-Bu: 6; Ph: 7), where L = 4-(2-hydroxyethyl)piperazine-1-carbodithioate, have been synthesized by stirring together 1,2-hydroxyethylpiperazine and CS2 in methanol, and then refluxing with a di-/triorganotin chloride. The synthesized products have been characterized by various spectroscopic (IR, 1H NMR, 13C NMR, EI-MS) techniques and single crystal XRD. FT-IR data indicate bidentate binding of the ligand. The magnitude of 2J(119Sn–1H) demonstrated a skew trapezoidal environment around tin(IV) in 1, whereas the metal geometry in 5 was between distorted tetrahedral and trigonal bipyramidal in solution. 13C NMR revealed four- and five-coordinate environments in 6 and 7, respectively, in non-coordinating solvent. EI-MS data agreed very well with the structural skeleton of the products. Single crystal XRD study has shown skew trapezoidal- and trigonal-bipyramidal Sn(IV) in 1 and 7, respectively. Compound 6 interacted with salmon sperm DNA (SS-DNA) with significant hypochromic effect and an intercalating mode of binding. Diorganotin(IV) derivatives (2 and 3) generally exhibited poor antibacterial/antifungal potential as compared to their trialkyltin(IV)/triaryltin(IV) counterparts (5 and 6). The in vitro hemolytic activities show that average lysis of human red blood cells caused by 17 was significantly lower compared to triton X-100 (positive control, 100% lysis) and not very much higher than PBS (negative control, 0% lysis).  相似文献   

12.
Six new organotin(IV) complexes were synthesized by direct reaction of RSnCl3 (R?=?Me, Bu and Ph) or R2SnCl2 (R?=?Me, Bu and Ph) and 2-hydroxyacetophenone thiocarbohydrazone [H2APTC] under purified nitrogen in the presence of base in 1?:?2?:?1 molar ratio (metal: base: ligand). Complexes 2–7 have been characterized by elemental analyses, molar conductivity, UV-Visible, IR and 1H NMR spectral studies. Complexes 27 are non-electrolytes. The molecular structure of [Me2Sn(APTC)]?·?(C2H5OH) (5) has been determined by X-ray diffraction analysis. The thiocarbohydrazone ligand (1) and 27 have been tested for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi and Enterococci aeruginosa.  相似文献   

13.
2-(N-naphthylamido)benzoic acid was synthesized by the reaction of phthalic anhydride with naphthylamine in glacial acetic acid at room temperature. Complexes 19 were synthesized under reflux in good yield with general formula R4? n SnL n (R = Me, n-Bu, Ph, n-Oct, Bz and n = 2, 3), which were studied by microanalysis, IR, NMR (1H, 13C, 119Sn), and mass spectrometry. Cytotoxicity of the synthesized compounds was checked against Brine-shrimp larvae. In vitro activities against some Gram-positive and Gram-negative bacteria and fungi were also determined. Antimicrobial activities show that species with tetrahedral geometry in solution are more toxic.  相似文献   

14.
Five new organotin(IV) complexes, [(R3Sn)(O2C15H13)] n (R?=?Me: 1; nBu: 2), [RSn(O)(O2C15H13)]6 (R?=?Ph: 3), [(R2Sn)2(O2C15H13)2(μ 3-O)]2 (R?=?Me: 4), and [(R2Sn)(O2C15H13)2] (R?=?nBu: 5), have been prepared by the reaction of 2,3-diphenylpropionic acid and the corresponding organotin chloride with sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X-ray crystallography. The structural analyses reveal that 1 and 2 are 1-D infinite polymeric chains with Sn in syn–anti conformation. Complex 3 has a drum structure with six Sn centers. Complex 4 has a supramolecular chain-like ladder through weak intermolecular Sn?···?O interactions. Complex 5 is a monomer, connected into a 1-D polymer through intermolecular C–H?···?O interactions. Complexes 1 and 5 crystallize in the orthorhombic space groups P212121 and P21212, which are chiral space groups.  相似文献   

15.
Three new water-soluble organotin complexes R2Sn(5-BrSalGT)Cl [R = Ph, Me] and Ph2Sn(2-OHNaphGT)Cl have been synthesized by the reaction of R2SnCl2 (R = Ph or Me) with Schiff bases derived from condensation of Girard-T reagent with 5-bromosalicylaldehyde and 2-naphthaldehyde, (5-BrH2SalGT)Cl (1) and (2-OHH2NaphGT)Cl (2). The synthesized compounds have been investigated by elemental analysis, conductometric measurements, IR, 1H NMR, and 119Sn NMR spectroscopy. These data show that the deporotonated ligand is coordinated to Sn(IV) via ONO atoms and six-coordinate zwitterionic complexes are formed. The ligands and their complexes were investigated for their in vitro toxicity against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The results show remarkable antibacterial activity against the studied bacteria. All complexes exhibit more inhibitory effects than the parent ligand. The anticancer activity of all compounds were also performed on HN5 cell line and (2-OHH2NaphGT)Cl with concentration of 1 mg mL?1 was found to show higher anticancer activity than other compounds.  相似文献   

16.
Six new arenetelluronic triorganotin esters, namely (R3Sn)4[ArTe(μ‐O)(OH)O2)]2 (Ar = Ph, R = Me: 1 , R = Ph: 2 ; Ar = 3‐Me‐Ph, R = Me: 3 , R = Ph: 4 , Ar = 3‐Cl‐Ph, R = Me: 5 , R = Ph: 6 ), were prepared by treating arenetelluronic acids with the corresponding R3SnCl (R = Me, Ph) with potassium hydroxide in methanol. All complexes were characterized by elemental analysis, FT‐IR, NMR (1H, 13C, 119Sn) spectroscopy, and X‐ray crystallography. The structural analyses indicate that these complexes are isostructural as Sn4Te2 moiety, in which the Te22‐O)2 units are situated in the center and each Te atom is coordinated with two OSnR3 groups on the side. Complexes 1 , 3 , and 5 show one‐dimensional chain and two‐dimensional network supramolecular structures by intermolecular C H···O or C H···Cl interactions. The antitumor activities of these complexes reveal that most arenetelluronic triorganotin esters have powerful antitumor activities with certain regularity.  相似文献   

17.
Herein we describe the synthesis and characterization of compounds having the formulae R2SnL2 and R3SnL, where R = Me, n-Bu, Ph and n-Oct and L = 2-[N-(2,4,6-tribromophenylamido]propanoic acid. All the complexes have been characterized by various spectroscopic methods (IR and 1H, 13C, 119Sn NMR), elemental analysis, mass spectrometry and physical data. These compounds were also screened for their biological activity and found some encouraging results.  相似文献   

18.
By the action of pyridine on various Grignard reagents at room temperature, new diorganomagnesium complexes R2Mg · 2pyridine (R=Ph, n-Bu, t-Bu and Et) were prepared and analyzed. Anomalous results were obtained with methyl- or benzylmagnesium reagents.  相似文献   

19.
Homobimetallic carboxylates with general formulae (R3Sn)2?L (where R?=?Me, n‐Bu, Ph and L?=?acetylene dicarboxylate dianion) have been synthesized by refluxing disodium salt of acetylene dicarboxylic acid with triorganotin chlorides in 1?:?2 (L?:?M) molar ratio in methanol under reflux. These complexes have been characterized by elemental analyses, FTIR, and multinuclear NMR (1H, 13C) spectroscopies. DFT calculations have been performed for structural elucidation and results were compared with semi‐empirical data. FTIR data indicate bidentate chelation of the ligand with tin and the complexes exhibit five‐coordinate geometry in the solid state. Such coordination behavior is also supported by DFT and semi‐empirical studies. NMR data confirm four‐coordinate geometry in solution.  相似文献   

20.
Four new μ2-oxo-bridged dinuclear aryltelluronic triorganotin esters [ArTe(μ-O)(OH)(OSnR3)2]2 (Ar?=?n-propyl-Ph, R?=?Me: 1, R?=?Ph: 2; Ar?=?i-propyl-Ph, R?=?Me: 3, R?=?Ph: 4) were synthesized by reaction of μ2-oxo-bridged dinuclear aryltelluronic acids and the corresponding R3SnCl (R?=?Me, Ph) with potassium hydroxide in methanol. The complexes were characterized by X-ray crystallography, elemental analysis, FT-IR, and NMR (1H, 13C, 119Sn) spectroscopy. The structural analysis indicates that these complexes are isostructural and crystallized as Sn4Te2 molecules, in which the asymmetric four-membered Te2(μ2-O)2 units are situated in the center. The geometry of tellurium is described as a distorted octahedron and each tin is described as a distorted tetrahedron. Complex 2 has a 2-D network structure connected by intermolecular C–H?π interactions. Complexes 1–4 were tested for in vitro cytotoxicity against human lung cancer cells (A549) and human hepatocellular carcinoma cells (HepG2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号