首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lewis bases (=L) triphenylphosphine (PPh3) and tricyclohexyl phosphine (P(Cy)3) displace [60]fullerene (C60) from the complex fac-(η2-C60)(η2-phen)Mo(CO)3 (phen = 1,10-phenanthroline). The progress of the reactions was followed observing the decrease of the absorbance values at 440 nm and by monitoring the stretching carbonyl region from 1700 to 2100 cm−1. The plots of absorbance vs. time were biexponential, indicative of a biphasic behavior, for reactions under flooding conditions where [L] ? [fac-(η2-C60)(η2-phen)Mo(CO)3]. The plot of absorbance vs. time consisted of two consecutive segments: the first segment of the plot was a decrease of absorbance with time followed by a second segment where the absorbance increased with time. The first segment of the biphasic plot was ascribed to the solvent-assisted displacement of C60 from fac-(η2-C60)(η2-phen)Mo(CO)3 and the second segment to decomposition of the complex fac-(η1-L)(η2-phen)Mo(CO)3 produced in the first of the two consecutive reactions. The rate constant values corresponding to the first segment of the biphasic plot are independent of the chemical nature of L, the molar concentration of L, and the molar concentration of C60 but dependent on the chemical nature of the solvent.  相似文献   

2.
The preparation and properties of the compounds [Mo(η-C7H7)(dppe)Y] (Y = Cl, I, Me, H), [Mo(η-C7H7)(dppe)Cl]+A? (A = PF6, Br or I), {[Mo(η-C7H7)(dppe) Br]PF6}, {[Mo(η-C7H7)(dppe)I]PF6} and {[Mo(η-C7H7)(dppe)L]PF6} (L = CO, MeCN, or dppe) are described.  相似文献   

3.
The complex [(η5-C5H5)Fe(CO)]2-μ-dppe (dppe = ethane-1,2-bisdiphenylphosphide) (I) reacts with electrophiles through a η-CO and forms Lewis acid O-Adducts with alkylating reagents (giving cationic μ2-alkoxycarbyne compounds) or with alkulaluminum compounds. Treatment of I with acid affords a stable μ2-hydride salt (IV), [CpFe(CO)]22-dppe)+, which serves as an intermediate in the stepwise hydrogenation (reversibly) of I to a bridged bimetallic dihydride, [CpFe(CO)H]22-dppe. This dihydride serves as a hydride donor, regenerating IV, towards Ph3c+ or CpFe(CO)22-CH2CH2)+ hydride acceptors. The necessity of the μ2-dppe as a “mechanical linkage” in facilitating some bimetalic reactions is also established.  相似文献   

4.
Reaction of [WI(CO)27-C7H7)] with dppm (dppm = Ph2PCH2PPh2) or dppe (dppe = Ph2PCH2CH2PPh2) gives the trihaptocycloheptatrienyl complexes [WI(CO)2(L-L)(η3-C7H7)] [L-L = dppm, (A1); L-L = dppe (A2)]. The complex A1 reacts with NH4PF6 to give the unidentate biphosphine complex [W(CO)2(dppm-P)(η7-C7H7)][PF6] (B) which yields [W(CO)(dppm)(η7-C7H7)][PF6] (C) on reaction with Me3NO·2H2O. Substitution of a carbonyl ligand in [W(CO)37-C7H7)][PF6] with the organometallic phosphine ligand [Mo(CO)2(dppe-P)(η7-C7H7)][PF6] yields the heterobimetallic [{W(CO)27-C7H7)}(μ-dppe){Mo(CO)27-C7H7)}x][PF6]2 (D).  相似文献   

5.
The reactions of [Fe2(η-C5H5)2(CO)2(L)(CNMe)] (L  CO or CNME) with HgX2 (X  Cl, Br or I) give [Fe(η-C5H5)(CO)2HgX] and [Fe(η-C5H5)(L)-(CNMe)X] as the sole products in ca. quantitative yields; this is consistent with the previously proposed mechanism for the reactions of electrophiles with polynuclear metal carbonyl derivatives.  相似文献   

6.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

7.
The reactions of [Co(η-C5H5)(L)I2] with Na[S2CNR2] (R = alkyl or phenyl) give [Co(η-C5H5)(I)(S2CNR2)] (I) when L = CO and [Co(η-C5H5)(L)(S2CNR2)]I (II) when L is a tertiary phosphine, phosphite or stibine, or organo-isocyanide ligand. In similar reactions [Co(η-C5H5)(CO)(C3F7)I] gives [Co(η-C5H5)(C3F7)(S2CNMe2)] and [Mn(η-MeC5H4)(CO)2(NO)]PF6 forms [Mn(η-MeC5H4)(NO)(S2CNR2)]. The iodide ligands in I may be displaced by L, to give II, or by other ligands such as [CN]?, [NCS]?, H2O or pyridine whilst SnCl2 converts it to SnCl2I. The iodide counter-anion in II may be replaced by others to give [BPh4]?, [Co(CO)4]? or [NO3]? salts. However [CN]? acts differently and displaces (PhO)3P from [Co(η-C5H5){P(OPh)3}(S2CNMe)]I to give [Co(η-C5H5)(CN)(S2CNMe2)] which may be alkylated reversibly by MeI and irreversibly by MeSO3F to [Co(η-C5H5)(CNMe)(S2CNMe2)]+ salts. Conductivity measurements suggest that solutions of I in donor solvents are partially ionized with the formation of [Co(η-C5H5)(solvent)(S2CNR2)]+ I? species. The IR and 1H NMR spectra of the various complexes are reported. They are consistent with pseudo-octahedral “pianostool” molecular structures in which the bidentate dithiocarbamate ligands are coordinated to the metal atoms through both sulphur atoms.  相似文献   

8.
The complex [Ru(η5-C7H11)2H]BF4 (C7H11 = 2,4-dimethylpenta-2,4-dienyl) is highly reactive towards two- and six-electron ligands. e.g. giving with CO complex [RuCO(η4-C7H12)(η5-C7H11)]BF4. The 2,4-dimethylpenta-1,3-diene ligand (C7H12) of the latter complex is readily displaced giving, e.g. with excess cyclohexa-1,3-diene (C6H8) complex [RuCO(η4-C6H8)(η5-C7H11)]BF4. These reactions provide a convenient entry into monopentadienylruthenium chemistry.  相似文献   

9.
The crystal structure of the molybdenum half sandwich alkali salt [Li(TMEDA)2][Mo(η5-C5H5)(CO)3] shows the occurrence of a separated ion pair in the solid state. Furthermore, the crystal structures of the long known organotin complexes [Mo(η5-C5H5)(SnMe3)(CO)3], [{Mo(η5-C5H5)(CO)3}2SnMe2] and [Mo(η5-C5H5)(SnMeCl2)(CO)3] have been recorded. The chlorination of [Mo(η5-C5H5)(SnMe3)(CO)3] with SnCl4 is presented as an improved synthetic access to [Mo(η5-C5H5)(SnMeCl2)(CO)3]. Finally, the reaction of Li[Mo(η5-C5H5)(CO)3] with tBu2(Cl)Sn–Sn(Cl)tBu2 leads to the novel molybdenum distannane complex [Mo(η5-C5H5){SntBu2-Sn(Cl)tBu2}(CO)3], which is fully characterized by NMR, elemental and X-ray analysis.  相似文献   

10.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

11.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

12.
The UV absorption bands between approximately 330 and 200 nm have been assigned to Rydberg transitions for the d6 complexes Cr(η6-C6H6)2, Cr(CO)6 and Cr(η6-C6H6)(CO)3  相似文献   

13.
On the Reactivity of Disilylphosphido Complexes of Iron and Ruthenium towards 2,4,6-t-Bu3C6H2AsCl2. Generation and Structures of Arsaphosphenyl Complexes, Diphospha-ariranes, Phosphadiarsiranes, and 1,2-Diphospha-3,4-diarsetanes The reaction of (η5-C5Me5)(CO)2Fe? P(SiMe3)2 ( 1a ) with 2,4,6-t-Bu3C6H2AsCl2 (= Aryl AsCl2) ( 6 ) leads to the formation of the heterocycles [(η5-C5Me5)(CO)2Fe? P]2As-Aryl ( 7a ), (η5-C5Me5)(CO)2Fe? P(As-Aryl)2 ( 8a ), and [(η5-C5Me5)(CO)2Fe? P-As-Aryl]2( 9a ). The instable arsaphosphenyl complex [(η5-C5Me5)(CO)2Fe? P?As-Aryl] can be intercepted as its Cr(CO)5-adduct 13a . Analogously the ring compounds (η5-C5Me5)(CO)2Ru? P]2(As-Aryl)( 7b ) and (η5-C5Me5)(CO)2Ru? P(As-Aryl)2 ( 8b ) are obtained by treatment of (η5-C5Me5)(CO)2Ru? P(SiMe3)2 ( 1b ) with 6 . Here again the primarily generated arsaphosphene has to be stabilized by coordination to Cr(CO)5 which gave E-(η5-C5Me5)(CO)2Ru? P[Cr(CO)5 = As-Aryl ( E-13b ) and its Z-isomer ( Z-13b ). A comparable reaction sequence furnished the phosphaarsenyl complex (η5-C5Me5)(CO)(PPh)3Fe? P[Cr(CO)5] = As-Aryl ( 13c ). The molecular structures of 7a and 9a were elucidated by x-ray diffraction analysis. The most interesting feature of 7a is the AsP2-triangle, in which the As? P(2) bond length (235,0(2) pm) is slightly elongated with respect to the As? P(1) distance (231,6(1) pm). This effect is presumably due to severe steric interactions at the cis-substituted As? P(2) bond. Molecule 9a displays the picture of a bended 1,2-diphospha-3,4-diarsetane (interplanar angle 137.6°) with its substituents in the all trans-orientation. The As? P and P? P separations are normal whereas the As? As bond (249,7(4) pm) is slightly widened with respect to the calculated value for a single bond (ca 244 pm).  相似文献   

14.
On the Reactivity of (η5-C5Me5)(CO)2FeP(SiMe3)2 Toward P-Chloromethylene phosphanes The reaction of (η5-C5Me5)(CO)2FeP(SiMe3)2 ( 2 ) with three equivalents of Cl? P?C(SiMe3)2 ( 3a ) afforded the 3-methanediyl-1,3,5,6-tetraphosphabicyclo[3.1.0]hex-2-ene (η5-C5Me5)(CO)2Fe? ( 6a ). In contrast, 2 reacts with two equivalents of Cl? P?C(Ph)SiMe3 ( 3b ) to give the thermolabile (η5-C5Me5) · (CO)2Fe? P[P?C(Ph)SiMe3]2 ( 4b ) which decomposed during the reaction with further 3b. 4 b was also obtained from (η5-C5Me5)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 ( 1a ) and two equivalents of 3b .  相似文献   

15.
(η-C5H5)(CO)2W[(η3-C5H5)(C5H5)2], I, containing two tilted five-membered rings, is converted into the bridged ferrocene derivative (η-C5H5)(CO)2W{(η3-C5H5)}[(η-C5 H4)2Fe]} II by successive reaction with Na and FeCl2.  相似文献   

16.
Two new C2 chiral bidentate phosphorous ligands have been prepared in enantiomerically pure form. The two phosphorous centers bear electron-withdrawing groups ((CF3)2CH? O, C6F5) and are linked by a trans-cyclopentane-1,2-diol-derived bridge. Photolysis of [Cr(η6-C6H6)(CO)3] in the presence of these two new ligands and of two previously reported bidentate phosphites, and fluorophosphinites (L) afforded [Cr(η6-C6H6)(CO)L] complexes. IR Spectral comparison of the complexes shows the new ligands to be intermediate in their bonding properties between alkyl phosphites and CO.  相似文献   

17.
18.
[Co(R-η-C3H4)(η-C5H5)I] is a good precursor for the preparation of some new cationic complexes as the iodide can easily be replaced; thus addition of PEt3 to the iodo-complex (R  H) gives [Co(η-C3H5)(η-C5H5)(PEt3)]+. The reactions of [Co(R-η-C3H4)(η-C5H5))I] (R  H or 2-Me) with AgBF4 give solutions containing the coordinatively unsaturated species [Co(R-η-C3H4)(η-C5H5)+. The presence of traces of water leads to the formation of [Co(R-ηC3H4)-(η-C5H5)(H2O)]+. The addition of monodentate ligands L  PEt3 PPh3, AsPh3, SbPh3, CNCH3 and bidentate ligands LL  Ph2PCH2CH2PPh2(dppe) and o-C6H4(AsMe2)2(diars), gives, respectively mononuclear [Co(2-Me-ηC3H4)-(η-C5H5)L]+ and binuclear ligand-bridged [(2-Me-ηC3H4)(η-C5H5)CoLLCo(2-Me-ηC3H4)(η-C5H5))]2+ complexes. Crystals of [Co(2-Me-ηC3H4)(η-C5H5)-(H2O)]+[BF4]- are monoclinic, space group P21/c, with a 7.858(3), b 10.262(4), c 15.078(4) Å, β 98.36(1)°. The molecular structure contains the cobalt atom bonded to planar 2-Me-allyl and cyclopentadienyl substituents, which are almost parallel with the H2O molecule in a staggered conformation with respect to the 2-Me group.  相似文献   

19.
Reaction of chlorodiphenylphosphine with (η5-C5H5)(η7-C7H6Li)Ti gave (η5-C5H5)[η7-C7H6P(C6H5)2]Ti in good yields. This novel phosphinetitanium (II) derivative displaced one carbonyl of metal carbonyl complexes [Ni(CO)4, Fe(CO)5 and Mo(CO)6] to afford heterobimetallic complexes containing low valent titanium, and behaved as a poor electron-donating phosphine.  相似文献   

20.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号