首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal (M=Zn(II), Ni(II), Cu(II)) complexes with tetradentate Schiff base ligand, bis(pyrrol-2-ylmethyleneamine)phenyl, has been synthesized and characterized by elemental analyses, (1)H NMR, mass spectra and UV-vis spectra. The standard association constants (K(theta)) and the thermodynamic parameters (Delta(r)H(m)(theta),Delta(r)S(m)(theta),Delta(r)G(m)(theta)) for axial coordination of imidazole derivatives with these Shiff base complexes were measured with UV-vis spectrophotometric titration. The decrease of enthalpy is found to be the drive of the axial coordination. Our Schiff base complexes can incorporate two axial ligands, except 2-Et-4-MeIm with two big substituents of great steric bulk according to stoichiometry of 1:1. ZnL displays high selectively binding to imidazole due to the steric bulk effect. Supporting density functional theory (DFT) calculations have been undertaken on B3LYP/6-31G(d) level.  相似文献   

2.
In this work we show that the intramolecular C-H insertion of diazo-acetamides catalysed by di-rhodium(II) complexes can be highly influenced by the axial ligand on the di-rhodium(II) complex. Axially monocoordinated NHC-Rh2(OAc)4 complexes have a distinct reactivity from the parent Rh2(OAc)4 complex affording the cyclisation products in different rates and selectivities. Surprisingly, a new reaction mode emerged when using these complexes which led to a decarbonylation pathway.  相似文献   

3.
Ping Liu 《Tetrahedron》2010,66(3):631-122
Salen and half-salen palladium(II) complexes (salden)Pd (1, salden=N,N′-bis(3,5-di- tert-butylsalicylidene)-1,2-dimethylethylenediamine), (hsalph)PdCl (2, hsalph=3,5-di-tert- butylsalicylidene-1-iminophenylene-2-amine), and (salph)Pd (4, salph=N,N′-bis(3,5-di-tert- butylsalicylidene)-1,2-phenylenediamine) were prepared and structurally characterized by X-ray crystallography. Complex 2 proved to exhibit high catalytic activity toward Suzuki-Miyaura reaction. Polyaromatic C3-symmetric derivatives and various fluorinated biphenyl derivatives were readily achieved in good yields using Suzuki-Miyaura reaction catalyzed by complex 2.  相似文献   

4.
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(μ-Pz)2]n (1), [Pd(μ-mPz)2]n (2), [Pd(μ-dmPz)2]n (3), [Pd(μ-IPz)2]n (4) {pyrazolate (Pz), 4-methylpyrazolate (mPz), 3,5-dimethylpyrazolate (dmPz), 4-iodopyrazolate (IPz)} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 14 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.  相似文献   

5.
The new zinc ternary complexes [Zn(cyclen)NO3]ClO4 (I), [Zn2(cyclen)2(m-nic)](ClO4)3 (II), [Zn2(cyclen)2(m-pic)](ClO4)3 (III) (cyclen=1,4,7,10-tetraazacyclododecane; nic=nicotinic acid; pic=picolinic acid) were synthesized and their spectral and thermal properties were investigated. The compounds were characterized by elemental analysis, IR spectroscopy and TG/DTG, DTA methods. Moreover, the way of coordination of pyridinecarboxylate anions was proposed on the basis of the spectral data and consequently proved with results of X-ray structure analysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A UV-Vis spectrophotometric study of adduct formation of SalenH2 (1) and MII(Salen), where M?=?Mn (2), Fe (3), Co (4), Ni (5) and Cu (6) as donors with Me2SnCl2 as acceptor have been investigated in chloroform. Adducts (1a6a) have been characterized by 1H, 13C and 119Sn NMR, IR and electronic spectroscopy and microanalysis. Formation constants and thermodynamic parameters were measured for 1 : 1 and 2 : 1 adducts at various temperatures (T?=?278 to 308 K). The data refinement was carried out with the SQUAD 84 program. The trend of formation constants of MII(Salen) complexes with Me2SnCl2 follows the order: Mn>Fe>Cu>Co>Ni. The formation constants for the free 1 and MII(Salen) with Me2SnCl2 changes according to the following trend: MII(Salen)>SalenH2  相似文献   

7.
Spectral and thermochemical studies of complexes of zinc(II)tetra-tertbutylphthalocyanine (Zn(t-Bu)4Pc) with some amines have been carried out. Spectral effects of the complex formation of the metallophthalocyanine with amines have been established. It has been found that an ability of Zn(t-Bu)4Pc to coordinate amines depends on both their nature and conditions of preparation. Similarity of the crystal structures of biligand and monoligand of Zn(t-Bu)4Pc complexes to individual β- and α-polymorphs of Zn(t-Bu)4Pc, respectively is proved by IR spectroscopy and X-ray diffraction method.  相似文献   

8.
The reaction between zinc(II) azide, Zn(N3)2 and aminopyrazine (ampyz) afforded the complexes: [Zn(N3)2(ampyz)2] (1), [Zn(N3)2(ampyz)]n (2) and [Zn3(N3)6(ampyz)2]n (3). These complexes are characterized by spectroscopic and crystallographic methods. The IR spectra of these compounds are measured and discussed. The structure of 1 consists of isolated tetrahedral zinc atom surrounded by two mono-dentate N-ampyz and two terminal azido ligands. Complex 2 features a zigzag chain of zinc centers in which each zinc is surrounded by alternate di-EO (end-on) and di-EE (end-to-end) azide bridges, the chain thus contains alternate four-membered Zn2N2 and eight-membered Zn2(NNN)2 rings. The two ampyz ligands are located in cis-arrangement and each of them further binds another zinc atom giving rise to a 3D network. Complex 3 contains two structurally different zinc atoms; the six-coordinate Zn(1) center links two di-EO azido bridges and two trans ampyz, thus having ZnN6 chromophore. The five-coordinate Zn(2) center binds two di-EO bridging azido groups and the fifth position is occupied by an N atom from a bridging ampyz molecule. Both zinc centers, therefore participate in the formation of a 1D chain of cyclic Zn2N2 units. Each ampyz ligand binds another zinc atom via the second pyrazinic N atom giving another cross-chain and thus the structure consists of 2D sheets. In these three complexes the azido ligands of all types are asymmetric and linear within the experimental error.  相似文献   

9.
A series of metal complexes was synthesized using a simple thiourea derivative. The prepared complexes were characterized using different techniques (FTIR, ESR, X-ray diffraction [XRD], TG/DTA, and TEM). The FTIR spectrum of the ligand shows the presence of its tautomer forms (keto–enol). The ligand coordinates as a neutral bidentate in the Pt(IV), Pd(II), and Pt(II) complexes. In the case of Co(II) and Ni(II) complexes, the ligand is mono-negative bidentate. The proposed complexes are four to six coordinate. The geometries are proposed based on electronic spectral data and magnetic measurements and were verified using other tools. The XRD patterns reflect the nanocrystalline structures except for the Cu(II) complex, which is amorphous. The TEM images for platinum complexes show nanosize particles and homogeneous metal ion distribution on the complex surface. The EPR spectrum of Cu(II) complex verified the octahedral geometry of the complex. Molecular modeling was performed to assign the structural formula proposed for the ligand based on the characterization results.  相似文献   

10.
Unsymmetrically-substituted ruthenium(II) Schiff-base complexes, [Ru(CO)(B)(L x )] [B = PPh3, AsPh3 or Py; L x = dianion of tetradentate unsymmetrical Schiff-base ligand; x = 4–7, L4 = salen-o-hyac, L5 = valen-o-hyac, L6 = salphen-o-hyac, L7 = valen-2-hacn], were prepared and characterized by analytical, IR, electronic, and 1H NMR spectral studies. The new complexes were tested for their catalytic activity towards the oxidation of benzylalcohol to benzaldehyde.  相似文献   

11.
Cu(II) complexes of acenaphthaquinonemono(4-methylquinolinyl)hydrazone (AMH) of general composition [CuLX2] (whereL=AMH;X=Cl, Br, I, OAc or NO3) with the exception of sulphato complex, where the composition is found to be [CuLSO4]2 have been synthesized and characterized by elemental analyses, magnetic moment measurements, conductivity measurements, IR, electronic and EPR spectral techniques and by thermal analysis. A planar geometry is indicated for all the complexes. TG curves show one step decomposition of complexes and formation of CU2O at the end of the step.One of the author (P.K.S.) is thankful to UGC, New Delhi (India), for providing financial assistance and is also indebted to the Department of Chemistry, University of Delhi, Delhi (India) for providing the necessary laboratory facilities.  相似文献   

12.
Hydrazinium metal glycinates [(N2H5 2M(NH2CH2COO)4] and bis(hydrazine)metal glycinates, [M(NH2CH2COO)2(N2H4)2], whereM=Co, Ni or Zn have been prepared and characterized by chemical analyses, magnetic moments and vibrational and electronic spectra. The thermal behaviour of these compounds has been studied by thermogravimetry and differential thermal analyses. These complexes decompose with high exothermicity giving metal powder as the final residue. The X-ray powder data of each set of complexes show isomorphism among themselves.  相似文献   

13.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

14.
The computational analysis of geometrically different copper-trimethoprim complexes, experimentally formed at two different temperatures, was performed using Density Functional Theory (DFT) method. Initial geometries of copper-trimethoprim complexes 1, 2, and 3 were obtained from crystallographic data. These three geometries of complexes 1, 2, and 3 were fully optimized using B3LYP/BLYP hybrid density functional methods along with 6-31G and LANL2DZ basis sets at two temperatures, 298 and 352 K. The results obtained were compared with the experimental data and show that complex 1 is the most stable geometry while complex 3 is unstable/intermediate geometry and can be converted to stable form after the recrystallization process. Moreover, LANL2DZ basis set gives more accurate (with respect to experimental) results as compared to 6-31G.  相似文献   

15.
Chalcone-derived 3-phenyl-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCTPh) (1), 3-(4-chlorophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4ClPh) (2), 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh) (3), and 3-(4-nitrophenyl-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4NO2Ph) (4) were obtained as well as their gallium(III) and zinc(II) complexes [Ga(PyCTPh)2]NO3 (Ga1), [Ga(PyCT4ClPh)2]NO3 (Ga2), [Ga(PyCT4BrPh)2]NO3 (Ga3), [Ga(PyCT4NO2Ph)2]NO3 (Ga4), [Zn(PyCTPh)2] (Zn1), [Zn(PyCT4ClPh)2] (Zn2), [Zn(PyCT4BrPh)2] (Zn3), and [Zn(PyCT4NO2Ph)2] (Zn4). The chalcones, thiosemicarbazones, and zinc(II) complexes were not active against Pseudomonas aeruginosa. The thiosemicarbazones proved to be more active than the parent chalcones against Staphylococcus aureus and Candida albicans. Coordination to zinc(II) resulted in activity improvement of most thiosemicarbazones against S. aureus. Coordination to gallium(III) significantly improved the antimicrobial activity of all thiosemicarbazones against the studied micro-organisms, suggesting this to be an effective strategy for antimicrobial activity enhancement.  相似文献   

16.
Two dinuclear Co(II) complexes, [Co2(L)2(EtOH)4]·4ClO4 (1) and [Co2(L)2(H2O)2(NO3)2]·2NO3 (2) (L?=?4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole), have been obtained and characterized by IR, elemental analysis, and single-crystal X-ray diffraction analysis. The stabilization of their crystal lattices is maintained by strong H-bonds between counterions and host framework, which lead to various supramolecular architectures. The urease inhibitory properties of 1, 2, and L were investigated, where the two complexes revealed strong urease inhibition activities. Docking simulations of 2 have been performed with H. pylori urease (PDB code: 1E9Z) to rationalize their binding models.  相似文献   

17.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

18.
Aqua-bridged binuclear cobalt (II) benzoate complexes having pyridine as auxiliary ligands are synthesised through solid state reactions and characterised. The binuclear core in these complexes comprise of two bridging benzoates and an aqua bridge. Each of the cobalt (II) centre is further co-ordinated to one benzoate and two pyridine ligands. The aqua-bridged cobalt (II) benzoate complex [Co2(μ-H2O)(μ-OBz)2(OBz)2(Py)4] ·  (C6H6)(BzOH) (1a) is inclusion compounds with benzoic acid and benzene (where OBz  =  benzoate, py  =  pyridine). Analogous complex [Co2(μ-H2O)(μ-OBz)2(OBz)2(Py)4] · 1.5(C6H6) without benzoic acid included is also prepared by an alternative method and structurally characterised. Analogous aqua-bridged complex derived from p-chlorobenzoic acid in unsolvated form is characterised. The Co–O–Co separation in these complexes is in the range of 3.55–3.64 Å with angles Co–O–Co varying from 111.8° to 116.4°. While similar reaction in solution leads to the formation of mononuclear complex having composition [Co(OBz)2(Py)2(H2O)]. The unsubstituted benzoate complex 1a can be easily oxidised to form a tetrameric cobalt (III) complex having benzoate and oxo-bridged structure with a Co4O4 core.  相似文献   

19.
Although salens and imidazoles are well-studied motifs among bioactive and therapeutic agents, their properties when combined in transition metal complexes are not well developed. To explore the structure/reactivity of this class of compounds, a salen-based ligand, namely (2,2′-{1,2-ethanediylbis[nitrilo(E)methylylidene]}diphenol, S), and its binary (MS) and ternary (MSI) complexes (I = imidazole; M = Co (II), Ni (II), Cu (II), Cd (II), Al (III), and La (III)) have been synthesized and fully characterized by standard physicochemical and theoretical methods. Evidence from structural analysis tools along with DFT modeling revealed an unusual monobasic tridentate salen binding mode, involving the phenolic oxygen, the nitrogen of the azomethine group, and NH group formed via phenol-to-cyclohexadienone tautomerization, giving rise to a general molecular formula of MSI complexes as [M(S)(I)2(Cl)] for M (II) = Co, Ni, Cu and Cd or [M(S)(I)(Cl)2] for M (III) = Al and La, respectively. The antimicrobial activities of S, MS, and MSI were screened against several bacterial and fungal strains. Of all tested complexes, CdS and CuSI were the most effective antimicrobials, giving larger inhibition zones than the reference antibiotics. The antimicrobial efficacy for the MS complexes follows the order: CdS > gentamicin > CuS > NiS > CoS > LaS > AlS > S, whereas MSI complex, potencies are ordered as CuSI > gentamicin > CdSI >NiSI > CoSI > LaSI > AlSI > S. In vitro cytotoxicity screening of MSI complexes disclosed that both CuSI and CdSI exhibited higher activity against human liver (Hep-G2) and breast (MDA-MB231) carcinoma cell lines than the reference (cisplatin) drug. The satisfactory bioactivities observed for several of these compounds supports the underlying design idea for combining important bioactive motifs for possible therapeutic benefit.  相似文献   

20.
Two mononuclear copper(II) complexes, [Cu(C4H3N2O2)2?·?4H2O] (1) and [Cu(C12H11N2O2Cl2)2] (2), were synthesized and structurally characterized by single-crystal X-ray analysis. The copper(II) adopts a square-planar environment in 1, while the geometry in 2 can be described as distorted square-pyramidal. Complexes 1 and 2 were evaluated for their inhibitory activities against jack bean urease in vitro and both were found to have strong inhibitory activities comparable to that of acetohydroxamic acid. A docking simulation was performed to position 2 into the jack bean urease active site to determine the probable binding conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号