首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of di(aquo-O)(pyrazine-2,3-dicarboxylato-N,O; -O′,O′′) calcium(II) hydrate [Ca(2,3-PZDC)(H2O)2·;H2O] contains molecular sheets in which Ca(II) ions are bridged by the carboxylate groups of the ligand molecules. Two bridging paths are evident. In the first, an N,O-bonding moiety formed by a hetero-ring nitrogen atom and the carboxylate oxygen atom nearest to it and both oxygen atoms of the second carboxylic group are active. The second path is formed by the other oxygen atom from the carboxylic group involved in the N,O-bonding moiety and an oxygen atom from the second carboxylic group. The latter atom is bidentate. A two-dimensional molecular pattern is formed. Each Ca(II) ion is also coordinated by two water oxygen atoms, making the number of coordinated atoms eight. The coordination polyhedron is a distorted pentagonal bipyramid with an oxygen atom at the apex on one side of the equatorial plane and two oxygen atoms forming the apices on the other side.  相似文献   

2.
The structure of triclinic catena-tetraquo(μ-pyridine-2,3-dicarboxylato-N,O; O′)calcium(II) is composed of two symmetry independent Ca(II) ions and two independent ligand molecules. Each Ca(II) is coordinated by a N,O-bonding moiety of a ligand, four water oxygens, and a carboxylate oxygen donated by an adjacent bridging ligand. The resulting molecular ribbons are propagating in the [010] crystal direction. Both Ca(II) ions are eight coordinate forming a capped pentagonal bipyramidal with strongly distorted pentagonal equatorial planes. Hydrogen bonds between carboxylate oxygens and coordinated waters are responsible for the stability of the structure. The orthorhombic structure of catena-trisaquo[(μ-2, 3-dicarboxypyridin-1-ium-O,O′; O′′) (H pyridine-2,3-dicarboxylato-N,O)]calcium(II) is composed of molecular ribbons in which the bridging of Ca(II) ions occurs through a ligand using one bidentate carboxylate. The other carboxylate of this ligand donates only one O atom to Ca(II), the second remaining inactive. A proton is attached to the hetero-nitrogen. Each Ca(II) is also chelated by a N,O-bonding moiety of a second ligand, which does not bridge and its second carboxylate remains protonated. Three water oxygen atoms complete the coordination around the Ca(II) ion to eight. The resulting coordination polyhedron is a capped pentagonal bipyramid with a strongly distorted equatorial plane. Hydrogen bonds in which coordinated waters act as donors are responsible for the stability of the structure.  相似文献   

3.

The calcium (II) complex: catena-mono(μ-pyridine-2,6-dicarboxylato-O:O:N;O') (diaqua-O)mono (nitrato-O:O)calcium(II) exists in two polymorphic forms. Each contains molecular ribbons in which adjacent Ca(II) ions are bridged by monodentate oxygen atoms donated by one carboxylate group of the pyridine-2,6-carboxylate ligand. Apart from this bridging oxygen atom, the Ca(II) ion is coordinated by two carboxylate oxygen atoms contributed by a different carboxylate group of the ligand molecule, the heteroring nitrogen atom, two water oxygen atoms and two oxygen atoms of a nitrate group giving rise to a distorted pentagonal bipyramid as a coordination polyhedron. The structures of the polymorphic modifications differ in the way in which the nitrate ligands are oriented with respect to the equatorial planes of the adjacent Ca(II) coordination polyhedra: the trans mode in the α-form; the cis mode in the β-form. In both forms, hydrogen bonds operate between the carboxylate oxygen atoms, water oxygen atoms and nitrate oxygen atoms.  相似文献   

4.
Triclinic unit cell [space group P 1] of the calcium(II) complex with pyrazine-2,3,5,6-tetracarboxylate (2,3,5,6-PZTC) and water ligands [poly-bis(μ-aqua)di(μ-pyrazine-2,3,5,6-tetracarboxylate)tetracalcium(II)] contains four Ca(II) ions in two symmetry independent sites, two 2,3,5,6-PZTC ligands with their geometrical centers at the inversion centers at 0, 1/2, 1/2 and 0, 1/2, 0 and two coordinated water molecules. Metal ions are bridged by the ligand molecules via their N,O bonding moieties and carboxylate oxygen atoms as well as coordinated water oxygen atoms producing a densely packed three-dimensional molecular pattern. The Ca1 ion coordinates eight atoms at the corners of a distorted bicapped tetragonal bipyramid. The coordination number of the Ca2 ion is seven in a strongly distorted pentagonal bipyramid. The pyrazine ring planes of the ligands are parallel to each other forming molecular sheets stacked normal to the a axis. They are interconnected by carboxylate oxygen atoms coordinating calcium ions located between the adjacent sheets.  相似文献   

5.

The structure of catena-{bis[(μ-aqua)(diaqua)(pyrazine-2,6-dicarboxylato-O,N-μ-O')](calcium(II)} consists of dimeric units composed of two calcium(II) ions, two ligand molecules and six water molecules. The calcium ions are bridged by two bidentate oxygen atoms, each donated by one carboxylic group of the ligand. The Ca(II) ion is also coordinated by one oxygen atom of the second carboxylate group and the hetero-ring nitrogen atom belonging to the same ligand molecule. Both calcium ions in a dimer are bridged to the Ca(II) ions in adjacent dimers by a pair of water molecules forming infinite molecular ribbons. In addition, each Ca(II) ion is coordinated by three water molecules; one of them is used for bridging the adjacent dimer. The coordination polyhedron around the Ca(II) ion is a pentagonal bipyramid with two apices above and one apex below the equatorial plane. The same molecular pattern is observed in the structure of catena-{bis[(μ-aqua)(diaqua)(pyrazine-2,6-dicarboxylato-O,N-μ-O')](calcium(II)} dihydrate which, in addition, contains two solvation water molecules per unit cell. In both compounds the molecular ribbons are held together by extended systems of hydrogen bonds.  相似文献   

6.
7.

The crystals of bis[ w -pyridine-2,6-dicarboxylato-O,N,O')]bis[trisaqua-calcium(II)] di(pyridine-2,6-dicarboxylic acid) contain dimeric molecules composed of two calcium(II) ions and two ligand molecules. Calcium ions are bridged by two bidentate oxygen atoms each donated by one carboxylic group of the ligand [Ca―N 2.467(2)Å], a monodentate oxygen atom of the second carboxylate group of the ligand [Ca―N 2.484(2)Å] and three oxygen atoms donated by the water molecules [mean Ca―O 2.388(2)Å]. The coordination polyhedron is a distorted pentagonal bipyramid. Acid molecules were found to be located in the space between dimers and involved in an extended network of hydrogen bonds.  相似文献   

8.
Abstract

Crystals of monoaquo(μ-5-methylpyrazine-2-carboxylato-N,O,O′), (5-methylpyrazine-2-carboxyato-N,O)di(μ-aquo-O,O)calcium(II) contain molecular ribbons in which two adjacent calcium(II) ions are bridged by two bidentate oxygen atoms donated by two ligand molecules on one side and bidentate oxygen atoms of two water molecules on the other. The coordination polyhedron around the Ca(II) ion is a pentagonal bipyramid. The vertices of its pentagonal base are composed of two bridging water oxygen atoms, two carboxylate oxygen atoms of two ligand molecules and a nitrogen atom belonging to one of the bridging ligands. A coordinated water molecule constitutes the apex of the pyramid on one side of the base, while the N, O bonding moiety of a second ligand molecule makes two apices on the other side of the base. The ribbons are held together by a system of hydrogen bonds.  相似文献   

9.
The structure of compound I: poly-diaqua(μ-imidazole-4,5-dicarboxylato-N,O; -O′; -O′′, -O′′′) calcium(II) monohydrate [Ca(C5H2N2O4)(H2O)2·H2O] is built of molecular sheets in which imidazole-4,5-dicarboxylate ligands bridge the metal ions using both carboxylate groups, each bidentate. Ca(II) is coordinated by six oxygen atoms and one hetero-ring nitrogen atom distributed at the apices of a capped tetragonal bipyramid. The basal plane of the pyramid is formed by two carboxylate oxygen atoms [d(Ca–O2?=?2.374(1)?Å, d(Ca–O4)?=?2.412(1)?Å] and two water oxygen atoms [d(Ca–O5)?=?2.384(1)?Å, d(Ca–O6)?=?2.455(1)?Å], the capped position is occupied by the carboxylate oxygen atom O3 [d(Ca–O3)?=?2.325(1)?Å], the hetero-ring nitrogen atom [d(Ca–N2)?=?2.523(1)?Å] and the carboxylate oxygen atom O4 [d(Ca–O2)?= 2.412(1)?Å] form the apices of the prism. The solvation water molecule plays a significant role in a framework of hydrogen bonds responsible for the stability of the crystal. The structure of compound II: trans-tetraquadi(H-imidazole-4,5-dicarboxylato-N,O) calcium(II) monohydrate, [Ca(C5H3N2O4)2(H2O)4·H2O] consists of monomers in which the Ca(II) ion is located on a centre of symmetry. The coordination around the Ca(II) is a strongly deformed pentagonal bipyramidal with the imidazole-4,5-dicarboxylate (4,5-IDA) ligands in the trans arrangement forming a dihedral angle of 68.3°. An imidazole-ring nitrogen atom [d(Ca–N)?=?2.632(2)?Å] and one carboxylate O atom [d(Ca–O)?=?2.531(2)?Å] from each ligand coordinate to the metal ion. The coordination is completed by four water oxygen atoms [d(Ca–O)?=?2.393(2)?Å] and [d(Ca–O)?=?2.367(2)?Å]. The coordinated water molecules act as hydrogen bond donors and acceptors to the unbonded carboxylate oxygen atoms in adjacent monomers giving rise to a three-dimensional molecular network.  相似文献   

10.

Crystals of {catena-[μ-aqua-O]bis[μ-pyridine-2,6-dicarboxylato-O,N-O']} {[monoaqua-nitrato, O-calcium(II)] [diaqua-calcium(II)]} contain dimeric units composed of two calcium(II) ions and two ligand molecules, in which the calcium ions are bridged by two bidentate oxygen atoms, each donated by one carboxylic group of the ligand. The Ca(II) ion is also coordinated by one oxygen atom of the second carboxylate group and the hetero-ring nitrogen atom belonging to the same ligand molecule. The dimers form molecular chains through protons situated at the symmetry centers halfway between the non-bridging carboxylate oxygen atoms. In addition, both calcium ions in the dimer are bridged to calcium ions in adjacent dimers - each by a pair water oxygen molecules giving rise to two-dimensional molecular sheets. Coordination of the Ca ion in the dimer is completed either by two water oxygen atoms or by one water oxygen atom and an oxygen atom donated by a nitrate group. The molecular sheets are held together by an extended system of hydrogen bonds.  相似文献   

11.
In poly[[μ3‐2,2′‐(disulfanediyl)dibenzoato‐κ5O:O,O′:O′′,O′′′](1,10‐phenanthroline‐κ2N,N′)cadmium(II)], [Cd(C14H8O4S2)(C12H8N2)]n, the asymmetric unit contains one CdII cation, one 2,2′‐(disulfanediyl)dibenzoate anion (denoted dtdb2−) and one 1,10‐phenanthroline ligand (denoted phen). Each CdII centre is seven‐coordinated by five O atoms of bridging/chelating carboxylate groups from three dtdb2− ligands and by two N atoms from one phen ligand, forming a distorted pentagonal–bipyramidal geometry. The CdII cations are bridged by dtdb2− anions to give a two‐dimensional (4,4) layer. The layers are stacked to generate a three‐dimensional supramolecular architecture via a combination of aromatic C—H...π and π–π interactions. The thermogravimetric and luminescence properties of this compound were also investigated.  相似文献   

12.
The title compound, tetrakis(μ‐2,3‐di­methoxy­benzoato)‐κ4O:O′;κ6O,O′:O′‐bis[(2,2′‐bi­pyridine‐N,N′)(2,3‐di­methoxy­benzoato‐O,O′)lanthanum(III)], [La2(2,3‐DMOBA)6(2,2′‐bpy)2], where 2,3‐DMOBA is 2,3‐di­methoxy­benzoate (C9H9O4) and 2,2′‐bpy is 2,2′‐bi­pyridine (C10H8N2), is a dimer with a centre of inversion between the La atoms bridged by four carboxyl­ate ligands. The central La atom is ennea‐coordinated and has a distorted monocapped square‐antiprism geometry.  相似文献   

13.
Bis(N,N‐di‐n‐butyl­di­thio­carbamato‐κ2S,S′)(1,10‐phenanthroline‐κ2N,N′)­zinc(II) ethanol hemisolvate, [Zn(C9H18NS2)2(C12H8N2)]·0.5C2H6O, (I), and bis(N,N‐di‐n‐hexyldithiocarbamato‐κ2S,S′)­bis(1,10‐phenanthroline‐κ2N,N′)calcium(II), [Ca(C13H26NS2)2(C12H8N2)2], (II), are mixed‐ligand com­plexes. In the first compound, the Zn atom has a distorted octahedral coordination, while in the second compound, the Ca atom is eight‐coordinate, with four S and four N atoms forming a highly distorted cube.  相似文献   

14.
The two‐dimensional mixed‐ligand network catena‐[(μ‐4,4′‐bipyridine)‐bis(μ‐L‐tryptophanato‐κ3N,O,O′)‐diaqua‐dicopper(II) dinitrate] is constructed through the bridging action of both the tridentate amino carboxylato and the bidentate 4,4′‐bipyridine ligand. The enantiomeric L‐tryptophanato ligand acts as an N,O chelate towards one copper atom and bridges through the second carboxylate oxygen atom to the adjacent copper ion. Stacking of the corrugated nets creates channels which are occupied by the hydrogen‐bonded and very weakly Cu‐coordinating nitrate ions.  相似文献   

15.
Diaquabis[dihydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonato‐κ2O,O′]magnesium(II), [Mg(C5H9N2O7P2)2(H2O)2], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The MgII cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1−) [or dihydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena‐Poly[[aquacalcium(II)]‐μ3‐[hydrogen 1‐hydroxy‐2‐(imidazol‐3‐ium‐1‐yl)ethylidene‐1,1‐diphosphonato]‐κ5O:O,O′:O′,O′′], [Ca(C5H8N2O7P2)(H2O)]n, consists instead of a CaII cation in a general position, a zwitterionic zoledronate(2−) anion and a coordinated water molecule. The geometry around the CaII atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the CaII atom displaced by 0.19 Å out of the equatorial plane. These CaII coordination polyhedra are `threaded' by the 21 axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca2–O2 chain which runs along [010]. These chains are in turn linked by an apical O atom from a –PO3 group in a neighbouring chain. This O‐atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three‐dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.  相似文献   

16.
Single crystals of the aluminium and gallium complexes of 6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenol), namely diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)aluminium(III) nitrate ethanol monosolvate, [Al(C22H18N2O4)(H2O)2]NO3·C2H5OH, 1 , and diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)gallium(III) nitrate ethanol monosolvate, [Ga(C22H18N2O4)(H2O)2]NO3·C2H5OH, 2 , were obtained after successful synthesis in ethanol. Both complexes crystallized in the triclinic space group P, with two molecules in the asymmetric unit. In both structures, in one of the independent molecules the tetradentate ligand is almost planar while in the other independent molecule the ligand shows significant distortions from planarity, as illustrated by the largest distance from the plane constructed through the central metal atom and the O,N,N′,O′‐coordinating atoms of the ligand in 1 of 1.155 (3) Å and a distance of 1.1707 (3) Å in 2 . The possible reason for this is that there are various strong π‐interactions in the structures. This was confirmed by density functional theory (DFT) calculations, as were the other crystallographic data. DFT was also used to predict the outcome of cyclic voltammetry experiments. Ligand oxidation is more stabilized in the gallium complex. Solid‐state photoluminescence gave an 80 nm red‐shifted spectrum for the gallium complex, whereas the aluminium complex maintains the ligand curve with a smaller red shift of 40 nm.  相似文献   

17.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

18.
In the cationic complex present in the title compound, chloro­[2‐(4‐imidazolyl‐κN1)­ethyl­amine‐κN](1,10‐phenanthroline‐κ2N,N′)copper(II) chloride monohydrate, [CuCl(C5H9­N3)­(C12H8N2)]Cl·H2O, the metal centre adopts a five‐coordinate geometry, ligated by the two phenanthroline N atoms, two amine N atoms of the hist­amine ligand (one aliphatic and one from the imidazole ring) and a chloro ligand. The geometry around the Cu atom is a distorted compressed trigonal bipyramid, with one phenanthroline N and one imidazole N atom in the axial positions, and the other phenanthroline N atom, the histamine amine N atom and the chloro ligand in the equatorial positions. The structure includes an uncoordinated water mol­ecule, and a Cl ion to complete the charge. The water mol­ecule is hydrogen bonded to both Cl ions (coordinated and uncoordinated), and exhibits a close Cu⋯H contact in the equatorial plane of the bipyramid.  相似文献   

19.
The crystal structure of the title compound, chloro(1,10‐phenanthroline‐N,N′)(1‐phenyl‐1,3‐butane­dion­ato‐O,O′)copper(II), [CuCl(C10H9O2)(C12H8N2)], has been determined. The CuII ion displays a distorted square‐pyramidal coordination, being linked to the two O atoms of the benzoyl­acetonate ligand and the two N atoms of the 1,10‐phenanthroline ligand in the basal plane, and the Cl atom in the apical site. TheCu—N, Cu—O and Cu—Cl bond lengths are 2.043 (2)/2.025 (2), 1.914 (2)/1.941 (2) and 2.485 (1) Å, respectively.  相似文献   

20.
The complex cation in [4,5-di­hydro-4,4,5,5-tetra­methyl-2-(2-pyridyl-κN)­imidazol-1-oxyl 3-oxide-κO3](nitrato-κ2O,O′)(N,N,N′,N′-tetra­methyl-1,2-ethanedi­am­ine-κ2N,N′)­nickel(II) hexafluorophosphate dichloromethane solvate, [Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2, is the first example of a nitro­nyl nitro­xide complex of a transition metal ion having d electrons in which nitrate is coordinated as a bidentate ligand. Owing to the smaller steric requirement of NO3, the Ni—­O(nitro­xide) bond length [2.014 (2) Å] is remarkably shorter than that in the corresponding ­β-­diketonate complexes [2.052 (4)–2.056 (2) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号