首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

2.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

3.
The synthesis and full characterization of the sterically demanding ditopic lithium bis(pyrazol‐1‐yl)borates Li2[p‐C6H4(B(Ph)pzR2)2] is reported (pzR = 3‐phenylpyrazol‐1‐yl ( 3 Ph), 3‐t‐butylpyrazol‐1‐yl ( 3 tBu)). Compound 3 Ph crystallizes from THF as THF‐adduct 3 Ph(THF)4 which features a straight conformation with a long Li···Li distance of 12.68(1) Å. Compound 3 tBu was found to function as efficient and selective scavenger of chloride ions. In the presence of LiCl it forms anionic complexes [ 3 tBuCl] with a central Li‐Cl‐Li core (Li···Li = 3.75(1) Å).  相似文献   

4.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

5.
Three azido-bridged copper(II) complexes, [Cu2(L1)21,1,3-N3)2] n ·2nH2O (1), [Cu4(L2)41,1-N3)21,1,3-N3)2] n (2), and [Cu2(L3)21,1-N3)2] (3), where L1, L2, and L3 are the deprotonated forms of 4-bromo-2-[(2-methylaminoethylimino)methyl]phenol (HL1), 4-bromo-2-[(2-ethylaminoethylimino)methyl]phenol (HL2), and 4-bromo-2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and structurally characterized by single-crystal X-ray diffraction analysis and IR spectra. The slight differences in the terminal groups of the Schiff bases lead to different bridging modes of the azido groups.  相似文献   

6.
Three new centrosymmetric dinuclear copper(II) complexes, [Cu2Cl2(L1)2] (1), [Cu2(μ 1,3-NCS)2(L2)2] (2), and [Cu2(μ 1,1-N3)2(L3)2] (3), where L1, L2, and L3 are the deprotonated forms of the Schiff bases 1-[(2-propylaminoethylimino)methyl]naphthalen-2-ol (HL1), 1-[(3-methylaminopropylimino)methyl]naphthalen-2-ol (HL2), and 2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Each Cu is coordinated by the three donors of the Schiff bases and by two bridging groups, forming a square-pyramidal geometry.  相似文献   

7.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

8.
Four dinuclear cadmium(II) complexes, [Cd2(L1)(μ2-Cl)Cl2] (1), [Cd2(L2)(μ2-Cl)Cl2] (2), [Cd2(L3)(μ2-Cl)Cl2] (3), and [Cd2(L4)3ClO4] (4), where HL1 = 4-methyl-2,6-bis(1-(2-piperidinoethyl)iminomethyl)-phenol, HL2 = 4-methyl-2,6-bis(1-(2-pyrrolidinoethyl)iminomethyl)-phenol, HL3 = 4-methyl-2,6-bis(1-(2-morpholinoethyl)iminomethyl)-phenol and HL4 = 4-methyl-2,6-bis(cyclohexylmethyl)iminomethyl)-phenol, were synthesized. They were characterized by elemental analysis, FT-IR, UV–Vis, fluorescence and electronspray ionization mass spectroscopy. Complexes 1 and 4 were also characterized by single crystal X-ray analysis. The cadmiums atoms in 1 are linked by μ2-chloride in a distorted square pyramidal geometry, whereas cadmium atom in 4 is in a distorted octahedral environment. The complexes show emission bands around 500 nm with excitation at 395 nm.  相似文献   

9.
Complexes [Zn2(HL1)2(CH3COO)2] (1) and [Zn2(L2)2] (2) were synthesized with salicylaldehyde semicarbazone (H2L1) and salicylaldehyde-4-chlorobenzoyl hydrazone (H2LASSBio-1064, H2L2), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn2(HL2)2(Cl)2] (3) in 1:9 DMSO:acetone crystals of [Zn2(L2)2(H2O)2]·[Zn2(L2)2(DMSO)4] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes.  相似文献   

10.
Three new coordination complexes, 2{[Co(L1)2]ClO4} · 0.5CH3OH (1), [Mn(L2)2] (2), and [Cu(HL2)(L2)]ClO4 · 2H2O (3) have been synthesized from two tridentate N,N,O-donor hydrazone ligands HL1, 2-acetylpyridine-salicyloylhydrazone, and HL2, 2-benzoylpyridine-salicyloylhydrazone, respectively and thoroughly characterized by elemental analysis, FT-IR, UV–Vis, electrochemical, and room temperature magnetic susceptibility measurements. Structures of the complexes have been unequivocally established by single crystal X-ray diffraction technique. Structural analysis reveals that 1 consists of two chemically similar but crystallographically independent cationic [Co(L1)2]+ units and 2 consists of a neutral [Mn(L2)2] molecule while 3 consists of a cationic [Cu(HL2)(L2)]+ unit. Metal ions display distorted octahedral geometry in 1 and 2 while in 3 it shows a distorted square pyramidal geometry. Ligand conformations around the metal ions are stabilized by the presence of intra-ligand hydrogen bonding in all the complexes. Structure of 3 reveals that a perchlorate ion linked to the complex by hydrogen bonding via a water molecule.  相似文献   

11.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

12.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

13.
Three polyoxometalate supramolecular assemblies based on rigid 2-(4-thiazolyl)benzimidazole (L) and two types of polytungstate anions, [CuII2Cl(L)4(PW12O40)]·3H2O (1), [CuII(L)2(H2O)]2[P2W18O62]·(HL)2·6H2O (2), and [ZnII(L)3]4[H(KPW12O40)3] (3), have been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, and IR spectra. Compound 1 contains binuclear copper clusters {Cu2L4Cl}3+ with Cl as bridges. These binuclear clusters and [PW12O40]3– anions construct a supramolecular 2-D layer through hydrogen-bonding interactions. In 2, the [CuL2(H2O)]2+ subunits and Wells–Dawson anions build a 1-D supramolecular chain. In 3, the [PW12O40]3– anions are covalently linked by K+ to form an inorganic chain. These chains and discrete [ZnII(L)3]2+ subunits construct a 3-D supramolecular structure. The electrochemical and photocatalytic properties of 13 have been studied.  相似文献   

14.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

15.
Five zinc(II) complexes, [Zn(L1)2] (1), [Zn(L1)2(phen)H2O]·H2O (2), [Zn(L1)2(bipy)] (3), [Zn(L2)2] (4), and [Zn(L2)2(phen)] (5) (where L1?=?4-nitrophenylacetate, L2?=?phenylacetate, phen?=?1,10-phenanthroline and bipy?=?2,2′-bipyridine), have been synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR. Complexes 2, 3, and 4 have been confirmed by single-crystal X-ray diffraction. In 2 and 3, zinc is bonded monodentate to two carboxylates exhibiting distorted trigonal bipyramidal and tetrahedral geometries, respectively, whereas in 4, the carboxylates are bridging bidentate in distorted tetrahedral geometry. The complexes have been screened for electro- and biological activities, including DNA interaction and enzyme inhibition studies. The effect of concentration of 1–5 on the activity of enzyme, alkaline phosphatase, showed that an increase in concentration of complex decreased the activity of the enzyme. Electrochemical behavior of HL1, 2, and 3 was investigated by cyclic voltammetry and it was observed that ligand-centered electro-activity exhibits a proportionate change on complexation. The UV–visible spectroscopic and viscometric data indicate electrostatic and groove binding of the complexes with DNA. The binding constant and Gibb’s free energy values indicate the feasibility of the complex–DNA interaction and show potent biological activity of the complexes.  相似文献   

16.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

17.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

18.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

19.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

20.
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号