首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from aromatic 2-hydroxy aldehydes were synthesized and characterized by elemental analyses, melting points, 1H-NMR, magnetic susceptibility, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared (IR), and electronic spectral measurements. Comparison of IR spectra of the Schiff bases and their metal complexes indicated that the Schiff bases are tetradentate, coordinated via the two azomethine nitrogens and the two phenolic oxygens. Magnetic moments and electronic spectral data confirm square-planar geometry for the complexes. Thermal studies reveal a general decomposition pattern, whereby the complexes decomposed partially in a single step due to loss of part of the organic moiety. A single endothermic profile, corresponding to melting point, was observed from the DSC of all complexes, except those whose ligand contained the nitro group, which decomposed exothermally without melting. The Schiff bases and their complexes were screened in vitro against 10 human pathogenic bacteria. The metal(II) complexes exhibited higher antibacterial activity than their corresponding Schiff bases.  相似文献   

2.
The zinc(II), copper(II), nickel(II), and cobalt(II) complexes of Schiff bases, obtained by the condensation of cefixime with furyl-2-carboxaldehyde, thiophene-2-carboxaldehyde, salicylaldehyde, pyrrol-2-carboxaldehyde, and 3-hydroxynaphthalene-2-carboxaldehyde, were synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR, and electronic spectral measurements. Analytical data and electrical conductivity measurements indicated the formation of M?:?L (1?:?2) complexes, [M(L)2(H2O)2] or [M(L)2(H2O)2]Cl2 [where M?=?Zn(II), Cu(II), Ni(II), and Co(II)] in which ligands are bidentate via azomethine-N and deprotonated-O of salicyl and naphthyl, furanyl-O, thienyl-S, and deprotonated pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral complexes. The synthesized ligands, along with their metal complexes, were screened for their antibacterial activity against different bacterial strains. The studies show the metal complexes to be more active against one or more species as compared to the uncomplexed ligands.  相似文献   

3.
A new series of antibacterial and antifungal amino acid derived Schiff bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR and electronic spectral measurements. The spectral data indicated the Schiff base ligands ( L 1– L 5) derived by condensation of salicylaldehyde with glycine, alanine, phenylalanine, methionine and cysteine, to act as tridentate towards divalent metal ions (cobalt, copper, nickel and zinc) via the azomethine‐N, deprotonated carboxyl group of the respective amino acid and deprotonated oxygen atom of salicylaldehyde by a stoichiometric reaction of M: L (1:2) to form complexes of the type K2[M( L )2] [where M = Co(II), Cu(II), Ni(II) and Zn(II)]. The magnetic moments and electronic spectral data suggested that all complexes have an octahedral geometry. Elemental analyses and NMR spectral data of the ligands and their Zn (II) complexes agree with their proposed structures. The synthesized ligands, along with their metal complexes, were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram ‐ positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared with the uncomplexed Schiff base ligands. The brine shrimp bioassay was also carried out to study their in‐vitro cytotoxic properties. Only three compounds ( 2, 11 and 17 ) displayed potent cytotoxic activity as LD50 = 8.196 × 10?4, 7.315 × 10?4 and 5.599 × 10?4 M /ml respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

5.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

6.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

7.
A series of Co(II), Ni(II) and Cu(II) complexes, [ML?·?2H2O] of Schiff bases derived from 4,4-diaminodiphenyl sulfone (dapsone) and 8-formyl-7-hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin have been synthesized. From analytical, spectral (IR, NMR, UV-Vis, ESR and FAB mass), and magnetic studies it has been concluded that the metal complexes possess octahedral geometry and are non-electrolytes. The redox behavior of the metal complexes is investigated by cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella, Salmonella, Streptococcus, Staphylococcus proteus) and antifungal activities (Fusarium, Candida, Rhizopus, Penicillium chrysogenum and Aspergillus niger) by the minimum inhibitory concentration method. The anthelmintic activity of the ligands and their metal complexes against earthworms was investigated. The DNA cleavage study was done by agarose gel electrophoresis. Anti-inflammatory activity studies showed the test compounds are comparable to the standard drug diclofenac sodium.  相似文献   

8.
A series of metal complexes of cobalt(II), nickel(II), copper(II), and zinc(II) have been synthesized with newly-derived biologically active ligands. These ligands were synthesized by condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and orthophthalaldehyde. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, 1H-NMR, UV-vis, magnetic, ESR, FAB-mass and thermal studies) data. Electrochemical study of the complexes is also made. All complexes are nonelectrolytes in N,N-dimethyl formamide and DMSO. The Schiff bases and their Co(II), Ni(II), Cu(II), and Zn(II) complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus, and cladosporium) activities by minimum inhibitory concentration method. DNA cleavage is also carried out.  相似文献   

9.
Some 1,1′‐(dicarbohydrazono) ferrocenes have been prepared by condensing 1,1′‐diacetylferrocene with either 2‐furoic hydrazide, 2‐thiophenecarboxylic hydrazide or 2‐salicylic hydrazide. All the ligands synthesized were characterized by IR and NMR spectroscopy and elemental analysis data (carbon, hydrogen, nitrogen) and then were used as ligands to react with cobalt(II), copper(II), nickel(II) and zinc(II) metals as chlorides to afford metal complexes having the general formula M(L)Cl2. IR and electronic spectral data, magnetic moment and elemental analyses were used in the structural investigation of the metal complexes synthesized. The ligands synthesized and their metal(II) complexes have been screened for their in vitro antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal than the uncomplexed ligands. However, the potency of all the ligands synthesized and their metal complexes was lower than that of the standard drugs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Several Schiff bases were synthesised from sulphonamide and resacetophenone. The characterisation was done by CHN analysis, IR and NMR spectral data. These Schiff bases were evaluated for their antimicrobial activity against both Gram-positive and Gram-negative bacteria as well as fungi. The antibacterial activity was studied against B. megaterium, E. coli, B. subtilis, P. fluorescens and antifungal activity against A. awamori. In addition, copper, nickel, cobalt, and iron complexes of two Schiff bases were also synthesised. Their structural characterisation was performed using CHN analysis and IR spectral data and their antibacterial and antifungal activities were also evaluated. The comparison of antimicrobial activities of the ligands and complexes shows that the presence of metal causes more inhibition i.e., more activity. Out of the four metals studied, cobalt and iron were found to have more antimicrobial activity.  相似文献   

11.
Schiff bases derived from 4-aminomethylcarbostyril and their transition metal complexes with CoII, NiII, CuII and ZnII have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities electronic, IR, PMR, ESR, FAB-Mass and thermal studies. From the above spectral studies it is concluded that the ligands of 4-substituted carbostyril Schiff bases, viz, salicylidene 4-aminomethylcarbostyril (SAMC); o-vanillinsalicylidene 4-aminomethylcarbostyril (VAMC) and 5′ chlorosalicylidene 4-aminomethylcarbostyril (CSAMC) act as bidenate molecules coordinating through azomethine nitrogen and phenolic oxygen. The ligands and their metal complexes have been screened in vitro for antibacterial, antifungal and antitumor activity. The results indicate that the biological activity increases on complexation. The CuII complexes of the above ligands show greater inhibitory action towards the P388/s tumor cells at lower concentrations.  相似文献   

12.
New tetradentate N(2)O(2) donor Schiff bases and their mononuclear Co(II), Ni(II), Cu(II), and Pd(II) complexes were synthesized and characterized extensively by IR, (1)H-, (13)C-NMR, mass, ESR, conductivity measurements, elemental and thermal analysis. Specifically the magnetic and electronic spectral measurements demonstrate the octahedral structures of cobalt(II), nickel(II) complexes and square planar geometries of copper(II), palladium(II) complexes. All the ligands and complexes were screened for their in vitro antibacterial activity against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and two gram-negative bacteria (Escherichia coli, Klebsiella pneumonia). In this study, Pd(II) complexes exhibited potent antibacterial activity against B. subtilis, S. aureus whereas other metal complexes also exerted good activity towards all tested strains even than standard drugs streptomycin and ampicillin.  相似文献   

13.
The titanium(IV) complexes of the unsymmetrical Schiff base ligands (L) of ethylenediamine and salicylaldehyde, o‐hydroxyacetophenone, o‐hydroxynapthaldehyde have been prepared and characterized when unsymmetrical ligands are synthesized through in situ partial displacement of the symmetrical bis‐Schiff bases. Compounds have been characterized by elemental analysis, electronic, (Infra‐red) IR, 1H NMR spectral data, magnetic susceptibility measurement and molar conductance and eight coordinated geometry of the complexes was proposed. The complexes have been found to posses 1:2:1 (M:L:B) stoichiometry (B is the secondary ligand). The bio‐efficacy of the prepared complexes has been examined against the growth of bacteria and fungi in vitro to evaluate their anti‐microbial potential.  相似文献   

14.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

15.
Cu(II) complexes with Schiff bases DMIIMP, DMIIMBD, DMIIMBP, DMIIMCP, DMIIMMP, and DMIIMNP (see Introduction for definitions) are derived from condensation of 3,4-dimethyl 5-amino-isoxazole with salicylaldehyde and substituted salicylaldehydes. The newly synthesized ligands were characterized by IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The Cu(II) complexes were characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, thermogram, DTA, and single crystal analysis. The complexes have general formula [M(L)2]. The Schiff bases are bidentate coordinating through the azomethine nitrogen and phenolic oxygen of salicylaldehydes. Based on the analytical and spectral data, four-coordinate geometry is assigned for all the complexes. ESR and single crystal analysis suggests square planar geometry for all complexes. [Cu(DMIIMP)2] crystallizes in the orthorhombic system. Antimicrobial studies of Schiff bases and their metal complexes show significant activity with the metal complexes showing more activity than corresponding Schiff bases. Cytotoxicity of the copper complexes on human cervical carcinoma cells (HeLa) was measured using the Methyl Thiazole Tetrazolium assay.  相似文献   

16.
Co(II), Ni(II), and Cu(II) complexes, ML2 · 2H2O have been synthesized with Schiff bases derived from m-substituted thiosemicarbazides and 2-methoxy benzaldehyde. The complexes are soluble in DMF/DMSO and non-electrolytes. From analytical, spectral (IR, UV-Vis, ESR, and FAB-mass), magnetic and thermal studies octahedral geometry is proposed for the complexes. The redox behavior of the complexes was investigated using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by Minimum Inhibitory Concentration method. DNA cleavage is studied by agarose gel electrophoresis method.  相似文献   

17.
Two Schiff bases, L1 (5,6;11,12-dibenzophenone-2,3,8,9-tetramethyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene) and L2 (6,7;13,14-dibenzophenone-2,4,9,11-tetramethyl-1,5,8,12-tetraazacyclotetradeca-1,4,8,11-tetraene), bearing functionalized pendant arms have been synthesized by cyclocondensation of 3,4-diaminobenzophenone with 2,3-butanedione and 2,4-pentanedione, respectively. Mononuclear macrocyclic complexes [FeL1Cl2]Cl, [FeL2Cl2]Cl, [ML1Cl2], and [ML2Cl2] (where M?=?Co(II) and Cu(II)) have been prepared by reacting iron(III), cobalt(II), and copper(II) with the preformed Schiff base. The ligands and their corresponding metal complexes were characterized by elemental analyses, ESI-mass spectra, conductivity, magnetic moments, UV-Vis, EPR, IR, 1H-, and 13C-NMR spectral studies, and TGA-DTA/DSC data. The TGA profiles exhibit a two-step pyrolysis, although the iron complexes decompose in three steps, leaving behind metal oxides as the final product. The ligands and complexes were screened in vitro against Gram-positive bacteria, Gram-negative bacteria, and fungi.  相似文献   

18.
A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 8-formyl-7-hydroxy-4-methyl coumarin and o-chloroaniline/o-toluidine. The structures of the complexes have been proposed from analytical, spectral (IR, UV-Vis, ESR and FAB-mass), magnetic, thermal and fluorescence studies. The complexes are soluble in DMF and DMSO and molar conductance values indicate the complexes are non-electrolytes. Elemental analyses indicate ML2 · 2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry. Spectroscopic studies (IR, UV-Vis, ESR and fluorescence) indicate octahedral geometry, in which ligand coordinates through azomethine nitrogen and phenolic oxygen via deprotonation. Thermal studies suggest coordination of water to the metal ion. Redox behavior of the complexes was investigated by cyclic voltammetry. The Schiff bases and their complexes were screened for their antibacterial (E. coli, S. aureus, P. aeruginosa and S. typhi) and antifungal activities (A. niger, A. flavus and Cladosporium) by MIC method.  相似文献   

19.
A series of Co(II), Ni(II), and Cu(II) complexes have been synthesized with Schiff bases (H2LI and H2LII) derived from 8-formyl-7-hydroxy-4-methylcoumarin or 5-formyl-6-hydroxycoumarin and o-aminophenol. Structures have been proposed from elemental analyses, spectral (IR, UV-Vis, FAB-mass, and Fluorescence), magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Elemental analyses indicate ML · 3H2O [M = Co(II), Ni(II), and Cu(II)] stoichiometry. Spectroscopic studies suggest coordination through azomethine nitrogen, phenolic oxygen of o-aminophenol, and the coumarin via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, and Cladosporium) activities by minimum inhibitory concentration (MIC) method. The redox behavior of the complexes was investigated using cyclic voltammetry (CV).  相似文献   

20.
A series of metal complexes of cobalt(II), nickel(II), and copper(II) having the general composition [M(L)2X2] with thioacetamide have been prepared and characterized by elemental chemical analysis, molar conductance, magnetic susceptibility measurements, mass, IR, EPR, and electronic spectral studies. The IR spectral data suggests the involvement of sulfur and amino nitrogen in coordination to central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for the cobalt(II) and nickel(II) complexes whereas tetragonal geometry for copper(II) complexes. Thioacetamide and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号