首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monometallic molybdenum(VI) complexes [MoO2(CH2LH2)]?·?H2O (1), [Mo2O4(CH2LH2)2(A)2] (A?=?py (2), 2-pic (3), 3-pic (4) and 4-pic (5)) and molybdenum(V) complexes [Mo(CH2LH2)(inh)]?·?H2O (6) and [Mo(CH2LH2)(slh)] (7) of bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) have been synthesized and characterized by various physico-chemical and spectroscopic studies. The compositions of the complexes have been established by elemental analyses and molecular weight determination. The structural assessment of the complexes has been done on the basis of data obtained from molar conductances, magnetic moment studies, electronic, infrared, electron paramagnetic resonance (EPR), proton nuclear magnetic resonance, and 13C proton nuclear magnetic resonance spectroscopic studies. The molar conductance values for the complexes in DMSO suggest that they are non-electrolytes. The magnetic moment values for 6 and 7 correspond to one unpaired electron while the remaining complexes are diamagnetic. Complexes 1, 6, and 7 have six-coordinate octahedral stereochemistry around molybdenum, while 25 are eight-coordinate dodecahedral around the metal centers. EPR spectral features suggest that 7 is less symmetrical than 6.  相似文献   

2.
Bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone(naohH4) interacts with manganese(II) acetate in methanol followed by addition of KOH giving [MnIV(naoh)(H2O)2]. Activated ruthenium(III) chloride reacts with naohH4 in methanol yielding [RuIII(naohH4)Cl(H2O)Cl2]. The replacement of aquo by heterocyclic nitrogen donor in these complexes has been observed when the reaction is carried out in presence of heterocyclic nitrogen donors such as pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF for these complexes suggest non-electrolytic nature. Magnetic moment values suggest +4 oxidation state for manganese in its complexes, however, ruthenium(III) complexes are paramagnetic with one unpaired electron. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that naohH4 coordinates in enol-form and keto-form to manganese and ruthenium, respectively. ESR and cyclic voltammetric studies of the complexes have also been reported.  相似文献   

3.
Manganese(IV) complexes [MnIV(npah)(H2O)2] (1) and [MnIV(npah)(A)2]?·?nH2O (where A?=?py (2), 2-pic (3), 3-pic (4), 4-pic (5)) and MnIV(npah)(NN)] (NN?=?bpy (6) and phen (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone in methanol. The composition of the complexes has been established by elemental analyses. Complex 3 has been characterized by mass spectral data also. Structural assessment of the complexes has been based on data from molar conductance, magnetic moment, electronic, electron paramagnetic resonance, and infrared (IR) spectral studies. Molar conductances of the complexes in DMSO suggest non-electrolytes. Magnetic moment and EPR studies suggest +4 oxidation state for manganese in these complexes. Electronic spectral studies suggest six-coordinate octahedral geometry around the metal ions. IR spectra reveal that H4npah coordinates to the metal in enol form. Reaction of the complexes with benzyl alcohol and SO2 has been investigated. Cyclic voltammetric studies of the complexes have also been carried out.  相似文献   

4.
Hala M. Refat  A. A. Fadda 《合成通讯》2014,44(15):2129-2154
This review describes the synthesis and reactions of 2-methoxy-1-naphthaldehyde as building block and important intermediate for the synthesis of polyfunctionalized heterocyclic compounds with pharmacological interest.  相似文献   

5.
The heterobimetallic complexes [MMoO2(L)(H2O)2] (where M = Zn2+ (1), Cu2+ (2), and Co2+ (4)) and [{MMoO3(H2L)(H2O)2}2] (where M = Ni2+ (3) and Mn2+ (5)) are synthesized from bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (H4L) using the monometallic precursor complex [MoO2(H2L)]·H2O in ethanol. The composition of the complexes is established based on the data obtained from the elemental analysis and molecular weight determinations. The structure of the complexes is discussed in the light of data obtained from molar conductance, magnetic moment, electronic, EPR and IR spectroscopic studies.  相似文献   

6.
Monometallic zinc(II) and nickel(II) complexes, [Zn(H2nsh)(H2O)] (1) and [Ni(H2nsh)(H2O)2] (2), have been synthesized in methanol by template method from bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone (H4nsh). Reaction of monometallic complexes with alternate metal(II) acetates as a transmetallator in 1 : 3 molar ratio resulted in the formation of heterobimetallic complexes [NiZn(nsh)(A)3] and [ZnNi(nsh)(A′)2] (A = H2O (3), py (4), 2-pic (5), 3-pic (6), 4-pic (7)), (A′ = H2O (8), py (9), 2-pic (10), 3-pic (11), and 4-pic (12)). The complexes have been characterized by elemental analyzes, mass spectra, molar conductance, magnetic moments, electronic, EPR, and IR spectroscopies. All of the complexes are non-electrolytes. Monometallic zinc(II) is diamagnetic while monometallic nickel(II) complex and all heterobimetallic complexes are paramagnetic. The metal centers in heterobimetallic complexes are tethered by dihydrazone and naphthoxo bridging. Zinc(II) is square pyramidal; nickel(II) is six-coordinate distorted octahedral except [ZnNi(nsh)(A)2], in which nickel(II) has square-pyramidal geometry. The displacement of metal center in monometallic complexes by metal ion has been observed in the resulting heterobimetallic complexes.  相似文献   

7.
The monomer molybdenum(VI) complex [MoO(2)(napoxlhH(2))].2H(2)O (1) has been synthesized from the reaction of MoO(2)(acac)(2) with bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (napoxlhH(4)) in 1:1 molar ratio in ethanol under reflux. This complex on reaction with pyridine/3-picoline/4-picoline yielded the dimer molybdenum(VI) complexes [Mo(2)O(4)(napoxlhH(2))(2)(A)(2)].2H(2)O (A=py (2), 3-pic (3), 4-pic (4)), whereas reaction with isonicotinoylhydrazine (inhH(3)) and salicyloylhydrazine (sylshH(3)) lead to the reduction of the metal centre yielding monomeric molybdenum(V) complexes [Mo(napoxlhH(2))(hzid)].2H(2)O (where hzidH(3)=inhH(3) (5) and sylshH(3) (6)). The complexes have been characterized by elemental analyses, molecular weight determinations, molar conductance data, magnetic moment data, electronic, IR, ESR and (1)H NMR spectroscopic studies. The complexes (5) and (6) are paramagnetic to the extent of one unpaired electron. The electronic spectra of the complexes are dominated by strong charge transfer bands. In all of the complexes, the principal dihydrazone ligand has been suggested to coordinate to the metal centres in the anti-cis-configuration. The complexes (1), (5) and (6) are suggested to have six-coordinate octahedral stereochemistry around molybdenum(VI) and molybdenum(V) metal centres, respectively, while the complexes (2)-(4) are suggested to have eight coordinate dodecahedral stereochemistry around molybdenum(VI) metal centre.  相似文献   

8.
The diamagnetic dioxomolybdenum(VI) complex [(MoO2)2(CH2L)(H2O)2]H2O (1) has been isolated in solid state from reaction of MoO2(acac)2 with bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) in 3:1 molar ratio in ethanol at higher temperature. The reaction of the complex (1) with electron donor bases gives diamagnetic molybdenum(VI) complexes having composition [Mo2O5(CH2LH2)]·2A·2H2O (where A = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), 4-picoline (4-pic, 5)). Further, when the complex (1) is allowed to react with protonic bases such as isonicotinoylhydrazine (inhH3) and salicyloylhydrazine (slhH3), reduction of molybdenum(VI) centre occurs leading to isolation of homobimetallic molybdenum(V) complexes [Mo2(CH2L)(inh)2(H2O)2] (6) and [Mo2(CH2L)(slh)2] (7), respectively. The composition of the complexes has been established by analytical, thermo-analytical and molecular weight data. The structure of the molybdenum(VI) complexes (1)–(5) has been established by electronic, IR, 1H NMR and 13C NMR spectral studies while those of the complexes (6) and (7) by magnetic moment, electronic, IR and EPR spectral studies. The dihydrazone is coordinated to the metal centres in staggered configuration in complex (1) while in anti-cis configuration in complexes (2)–(7). The complexes (6) and (7) possess magnetic moment of 2.95 and 3.06 BM, respectively, indicating presence of two magnetic centre in the complexes per molecule each with one unpaired electron on each metal centre without any metal–metal interaction. The electronic spectra of the complexes are dominated by strong charge transfer bands. All of the complexes involve six coordinated molybdenum centre with octahedral arrangement of donor atoms except in the complex (6), in which the molybdenum centre has rhombic arrangement of ligand donor atoms. The probable mechanism for generation of oxo-group in the complexes (2)–(5) involving coordinated water molecule has been proposed.  相似文献   

9.
The complexes (NH4)2[MoO2(C2H2O3)2]·H2O, (NH4)2[MoO2(C8H6O3)2] and (NH4)2[MoO3(C4H4O6)]·H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X-ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO? is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the α-carbon. The glycolate molybdenum complexes with general formula M2[MoO2(C2H2O3)2nH2O, where M is an alkali metal and n?=?1 or ½, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV-radiation.  相似文献   

10.
2-Hydroxy-4-methacryloyloxybenzaldehyde (2H4MBA), prepared from methacryloyl chloride and 2,4-dihydroxybenzaldehyde, was polymerized in methyl ethyl ketone at 70°C using benzoyl peroxide as a free radical initiator. Polychelates were obtained from N,N-dimethylformamide solutions of poly(2H4MBA) on addition of aqueous solutions of Cu(II)/Ni(II) ions. The polymers and polychelates were characterized by elemental analyses and spectral studies. The IR spectra of these polychelates suggest that metals are coordinated through the oxygen of the aldehyde group and oxygen of the phenolic—OH group. The electronic spectra, EPR, and magnetic moments of polychelates showed an octahedral and square planar structure for poly(2H4MBA)-Ni(II) and poly(2H4MBA)-Cu(II) complexes, respectively. X-ray diffraction studies reveal that the polychelates are highly crystalline. The thermal properties of polymer-metal complexes and their catalytic activity are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Heterobimetallic complexes [UO2MoV(CH2L)(hzd)(H2O)2] n , [ZnMoV(CH2L)(hzd)(H2O)2] n and mixedvalence complexes [MoVIO2MoV(CH2L)(hzd)(H2O)2] n (where hzdH3 = inhH3, n = 1; slhH3, n = 2) are synthesized from bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) and monometallic precursor complexes [Mo(CH2LH2)(hzd)]·nH2O (n = 0, 1) in ethanol. The composition of the complexes is established based on the data obtained from the elemental analysis. The structure of the complexes is discussed in the light of data obtained from molar conductance, magnetic moment, electronic, EPR, and IR spectroscopic studies. All complexes have ??B values in the range 1.59?C1.64 B.M., slightly lower than that required for one unpaired electron. The heterobimetallic complexes show two bands, while mixed-valence complexes show only one band in the visible region assigned to the d-d transition. The g-values decrease in going from uranyl-to-molybdenyl-to-zinc complexes containing the isonicotinoyldiazenido (inh) group, however, no such regular trend is observed in the case of complexes containing the salicyloyldiazenido (slh) group in the coordination sphere. In all complexes, the principal dihydrazone ligand is present in the enol form as a bridging hexadentate ligand in the anti-cis configuration where hydrazide ligands are coordinated to the metal centre as a trinegative bidentate ligand in the diazenido form.  相似文献   

12.
Reaction of 2-hydroxy-1-naphthaldehydebenzoylhydrazone(napbhH2) with manganese(II) acetate tetrahydrate and manganese(III) acetate dihydrate in methanol followed by addition of methanolic KOH in molar ratio (2 : 1 : 10) results in [Mn(IV)(napbh)2] and [Mn(III)(napbh)(OH)(H2O)], respectively. Activated ruthenium(III) chloride reacts with napbhH2 in methanolic medium yielding [Ru(III)(napbhH)Cl(H2O)]Cl. Replacement of aquo ligand by heterocyclic nitrogen donor in this complex has been observed when the reaction is carried out in presence of pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF (N,N-dimethyl formamide) of these complexes suggest non-electrolytic and 1 : 1 electrolytic nature for manganese and ruthenium complexes, respectively. Magnetic moment values of manganese complexes suggest Mn(III) and Mn(IV), however, ruthenium complexes are paramagnetic with one unpaired electron suggesting Ru(III). Electronic spectral studies suggest six coordinate metal ions in these complexes. IR spectra reveal that napbhH2 coordinates in enol-form and keto-form to manganese and ruthenium metal ions in its complexes, respectively. ESR studies of the complexes are also reported.  相似文献   

13.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

14.
Coordination polymers, {[Cd(2-mBIM)3](ClO4)2} n (1) and [Cd(BIM)2(NO3)2] n (2), have been prepared from the reaction of bis(2-methylimidazol-1-yl)methane(2-mBIM) with Cd(ClO4)2 and bis(imidazol-1-yl)methane (BIM) with Cd(NO3)2 in ethanol and water, respectively. Their structures were characterized by single crystal X-ray diffraction and IR spectroscopy. Compound 1 crystallizes in the rhombohedral space group R-3c with a = b = 12.3617(5) Å, c = 38.896(3) Å, γ = 120°, V = 5147.5(5) Å3, z = 6. The CdII occupies a crystallographic inversion center and is coordinated by six N atoms from six distinct 2-mBIM ligands to form a slightly distorted octahedral geometry. Each 2-mBIM is coordinated to two CdII cations, linking alternatively four CdII cations, resulting in a 32-membered M4L4 macrometallacycle. Compound 2 crystallizes in the monoclinic space group C2/m with a = 14.400(3) Å, b = 9.3894(18) Å, c = 8.6926(17) Å, β = 123.499(2)°, V = 980.1(3) Å3, z = 2. The Cd coordinates to four nitrogen atoms from four different BIM and two nitrates to form a slightly distorted octahedral geometry. The BIM ligands bridge to form a 1-D infinite double-bridged chain structure with 16-membered M2L2 macrometallacyclic structural units.  相似文献   

15.
Treatment of the complex Mo(Nmes)(O)Cl2(dme) (mes=2,4,6-trimethylphenyl; dme=1,2-dimethoxyethane) with KTpMe2, NaCp and bipy gives the corresponding derivatives (TpMe2)Mo(Nmes)(O)Cl (1), CpMo(Nmes)(O)Cl (2) and Mo(Nmes)(O)Cl2(bipy) (3). Other oxo---imido compounds of composition Mo(Nmes)(O)(S2CNR2)2 (R2=C4H4 4, C5H10 5, iPr2 6) can be obtained by reacting Mo(Nmes)(O)Cl2(dme) with the appropriate dithiocarbamate salt. The NMR properties of 4–6 are consistent with the presence of two rapidly equilibrating dithiocarbamate ligands. The reaction of Mo(Nmes)(O)Cl2(dme) with different Grignard reagents, Mg(R)X, produces the trialkyl imido complexes Mo(Nmes)R3Cl (R=Me 7, CH2C(Me)2Ph 8, CH2SiMe3 9).  相似文献   

16.
The interaction of nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA) with tungsten(VI) (pH 7.5) and molybdenum(VI) (pH 6.00) has been studied in aqueous solutions at 25 ℃, and different ionic strengths (0.1 相似文献   

17.
A new cis-dioxo molybdenum(VI) complex was obtained by reaction of 2,4-dihydroxybenzylidene(5-N,N-methylphenylamino-1,3,4-thiadiazol-2-yl)hydrazone as ligand and [MoO2(acac)2] in methanol and was characterized by elemental analyses, 1H NMR, IR, and electronic spectroscopic studies. The complex was also analyzed by single-crystal X-ray diffraction. The structure determination revealed a distorted octahedral coordination geometry around molybdenum in which the tridentate NNO donor (L2–) is bonded to [MoO2]2+ through phenolic oxygen, hydrazinic nitrogen, and thiadiazole nitrogen. The sixth coordination site is occupied by a weakly bonded methanol. The complex was tested as a catalyst for homogeneous epoxidation of olefins using tert-butyl hydrogen peroxide as an oxidant. In the homogeneous catalytic system, the reactions are efficiently carried out with high yields and selectivity.  相似文献   

18.
Abstract

Eight new mixed ligand complexes of dioxomolybdenum(VI) with 2-hydroxy-3-methoxy/3,5-dibromo benzaldehyde 4-phenyl/ethyl-S-methyl/butyl thiosemicarbazones (L) were synthesized. The complexes of general formula [MoO2LD] (D: methanol, pyridine) were characterized by elemental analysis, IR, UV, and 1H-NMR spectroscopy. The structure of 3a was also determined by X-ray single-crystal diffraction. The thiosemicarbazone ligands are coordinated to dioxomolybdenum(VI) center through ONN set and the sixth coordinated site of the molybdenum is occupied by the second ligand (D). The in vitro antimicrobial activities of all thiosemicarbazones and their dioxomolybdenum(VI) complexes were tested against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.  相似文献   

19.
Lubal P  Koprivová H  Sedo O  Havel J  Lis S  But S 《Talanta》2006,69(4):800-806
Spectrophotometric determination of molybdenum(VI) and tungsten(VI) with application of Artificial Neural Networks is proposed and it was applied for elemental analysis of solid polyoxometalates. Better results in comparison with previously those achieved by previous published method were demonstrated. MALDI-TOF Mass Spectrometry was tested for possible determination of molecular weight of polyoxometalates utilizing different matrices. Phenomena observed during desorption-ionisation processes are discussed. LDI-TOF MS was found to be suitable for the determination of Mo:W ratio in polyoxometalates as a rapid screening method to follow synthetic procedure.  相似文献   

20.
Sodium bis(trimethylstannyl)amide NaN(SnMe3)2, isolated by the reaction of trimethylstannyldiethylamine with sodium amide, reacts with tris(trimethylsilyl)hydrazino—dichloro-phosphine to form bis(trimethylsilyl)bis(trimethylstannyl)-2-phospha-2-tetrazene, (Me3Si)2N-N=P-N(SnMe3)2. Both the molecules have been isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号