首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

2.
3.
The new orotate complex of cadmium(II) with quinoxaline, mer‐[Cd(HOr)(H2O)3(QX)]·2H2O, was synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single crystal X–ray diffraction techniques. The complex crystallizes in the triclinic system, space group . The Cd2+ ion exhibits a distorted octahedral coordination by one bidentate orotate, one monodentate quinoxaline and three aqua ligands. The uncoordinated water molecules link the orotate, quinoxaline and aqua ligands via O–H···O, O–H···N hydrogen bonds. Thus, an extensive network of hydrogen bonds stabilizes the crystal structure and form an infinitive three dimensional lattice. The decomposition reaction takes place in the temperature range 20–700 °C in the static air atmosphere.  相似文献   

4.
A new ligand (L) and its mercury(II) complex have been synthesized under mild conditions. X-ray single-crystal structural analyses reveal 1-D, 2-D, and 3-D supermolecular structure of L and HgLI2. Solvent molecules and various weak interactions, including hydrogen bonds (N–H···N, O–H···O, and O–H···N) and π–π interactions play signi?cant roles in the ?nal supermolecular structures. Detailed investigation on 1H NMR spectra of L and HgLI2 are presented. Their photophysical properties were investigated both experimentally and theoretically.  相似文献   

5.
A mercury(II) chloride adduct of ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid), [HgCl2 (C9H6INO4)·H2O] has been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. The compound crystallizes in P21/c space group, a?=?8.919(3), b?=?23.216(3), c?=?7.714(3)?Å, β?=?95.79(3)°. The coordination geometry around mercury is distorted square planar [(2+2) coordination] with two short Hg–Cl bonds [2.308(2) and 2.309(18)?Å] and two long Hg–O(sulfonate) [2.738(4)?Å] and Hg–O(water) [2.889(4)?Å] bonds. The sulfonic group is deprotonated, the proton having migrated to the quinoline N atom that forms intermolecular hydrogen bonds. The inversion related organic ligands are stacked over one another. The crystal structure is further stabilized by a C–H···O, O–H···O and N–H···O hydrogen bonds.  相似文献   

6.
A new cobalt coordination polymer with linking unit 2-(1H-imidazole-1-yl)acetate (ima), [Co(ima)2] n (1), has been synthesized and structurally characterized by elemental analysis, IR spectra, and X-ray single-crystal diffraction. The X-ray analysis indicates that a neutral 2-D coordination polymer with (3,6) topology was obtained, which shows a 3-D supramolecular network through C–H···O weak interactions. Complex 1 displays mild antimicrobial activity against Achromobacter xylosoxidans ATCC 2706, Bacillus subtilis ATCC 6633, and Candida albicans ATCC 90028, respectively. The magnetic and thermal gravimetric properties for 1 have been investigated and discussed.  相似文献   

7.
The cyano-bridged heteronuclear polymeric complex, [Cd(teta)Ni(μ-CN)2(CN)2] · 2H2O (1), (teta = triethylenetetraamine) was synthesized and characterized by FT-IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. It crystallizes in the orthorhombic system, space group Pccn. The asymmetric unit also contains two uncoordinated water molecules. The coordination geometry around the Cd(II) centre is a highly distorted octahedral. In the crystal structure, intramolecular N–H···O and intermolecular N–H···O, O–H···O and O–H···N hydrogen bonds, beside the cyano-bridged chains made up of tetracyanonickelate ions coordinated to Cd(II) ions, where the Ni(II) ion is coordinated by four cyanoligands in a square-planar arrangement, link the molecules into polymeric networks parallel to (001) plane, where the hydrogen bonded water molecules occupy the cavities between the layers. The FT-IR spectrum was reported in the 4,000–400 cm−1 region. Vibration assignments were given for all the observed bands and the spectral feature also supported the structure of the polymeric complex. The decomposition reaction takes place in the temperature range 20–1,000 °C in the static air atmosphere.  相似文献   

8.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

9.
The title complex {[Co(dimb)2(H2O)2]·(NO3)2·(H2O)2}n ( 1 ) (dimb = 1,3‐di(imidazol‐1‐ylmethyl)‐5‐methylbenzene) has been hydrothermally synthesized by the reaction of dimb with Co(NO3)2·6H2O in aqueous solution. The cobalt(II) atoms are linked by bridging dimb ligands to form 2D corrugated and wavy networks containing Co4(dimb)4 macrocyclic motifs. Two neighboring independent layers interlinked each other in a parallel fashion to construct three‐dimensional structure by O–H···O, N–H···O and C–H···O hydrogen bonds. Magnetic measurement shows the weak antiferromagnetic interaction with a one‐dimensional chain model in the range of 5–300 K, with J of –0.68 cm−1.  相似文献   

10.
The synthesis, spectral characteristics (IR and NMR), elemental analysis and X-ray crystal structure of phosphorothioic triamide SP(NC5H10)3 (1) and its dinuclear mercury(II) complex [Hg2(μ-Cl)2(Cl)2{SP(NC5H10)3}2] (2) were investigated. A survey using the Cambridge Structural Database (CSD, version 5.38, May 2017) shows structures of coordination compounds of Au, Ag, Cd, Cu, Li, Mo, Ni, Pd, Te, Ti, Zn, and Zr with sulfur-donor SP(N)3-based ligands; the complex 2 is the first example of a mercury complex with the SP(N)3-based ligand studied by X-ray crystallography. Valence bond calculation was performed for the Hg–S bond in 2 and compared with the Hg–O bond in the only structure with a Cl2Hg–OP(N)3 structural motive in the CSD. The calculation confirms a more covalent nature of the Hg–S bond with respect to the Hg–O bond made by the EP(N)3-based ligands (E?=?S, O). The supramolecular structures based on C–H···S?=?P contacts in 1 and C–H···S═P and C–H···Cl–Hg assemblies in 2 are discussed.  相似文献   

11.
Using tri-ethyl phosphate as a phosphate source, the hydrothermal reaction of cobalt(II) oxalate di-hydrate, zinc oxide and 1,8 di-amino octane at 200°C gave purple crystals of Co6(PO4)4?·?7H2O (1), along with a mixture of open-framework zinc–cobalt phosphates Co–Zn–HPO4, and Co3(HPO4)2(2OH). Compound 1, has been characterized by thermal analysis, FTIR and single crystal X-ray diffraction. The single crystal structure of Co6(PO4)4?·?7H2O reveals cobalt in four, five and six-fold coordination with linkages through the bridging water molecules and the oxygen atoms of the phosphate in the subunits. Four subunits are connected together through the oxygen atoms (PO4), to form the three dimensional open framework structure, with a 20-member ring channel that hosts two uncoordinated water molecules. Thermal removal of the water molecules occurs between 400–600°C, with the collapse of the structure above 600°C.  相似文献   

12.
Cobalt(II) and copper(II) complexes of 3-hydroxypicolinamide (3-OHpia), namely [Co(3-OHpia)2(H2O)2](NO3)2 (1), [Co(3-Opia)2(H2O)2] (2) and [Cu(3-OHpia)2(NO3)2] (3), were prepared and characterized by IR spectroscopy and TG/DTA methods. The molecular and crystal structures of 1 and 3 were determined by X-ray crystal structure analysis. Complexes 1 and 3 were obtained by reaction of 3-hydroxypicolinamide with cobalt(II) nitrate or copper(II) nitrate, respectively, in a mixture of ethanol and water. Complex 2 was prepared by reaction of cobalt(II) acetate and 3-OHpia in aqueous solution. X-ray structural analysis revealed octahedral coordination polyhedra in both 1 and 3 and the same N,O-chelated coordination mode of 3-OHpia. The coordination sphere of the cobalt(II) center in 1 is completed by two coordinated water ligands and that of the copper(II) center in 3 by two coordinated nitrate anions. There are also two uncoordinated nitrate ions in 1 which compensate the positive charge of cobalt(II). The crystal structures of 1 and 3 are dominated by intermolecular O–H···O and N–H···O hydrogen bonds. The thermogravimetric study indicated the loss of two coordinated water molecules in 1 and 2 and of one 3-OHpia ligand together with N2 molecule in 3 at lower temperatures (up to 300 °C).  相似文献   

13.
Reaction of the Schiff base, 1-(4-methylimidazol-5-yl) phenylhydrazonopropane-2-one oxime (LH), with copper(II) perchlorate hexahydrate and copper(II) nitrate trihydrate in a 1 : 1 M proportion in methanol affords [Cu2L2(H2O)(ClO4)](ClO4) (1) and [Cu2L2(H2O)2](NO3)2] (2) in moderate yields. Both 1 and 2 have been characterized by elemental analysis, ESI-MS, FT-IR, UV–vis absorption spectroscopy, EPR, electric conductivity, and magnetic susceptibility measurements. The X-ray crystal structures of 1·CH3COCH3 and 2 have been determined. Both compounds are dinuclear copper(II) complexes, with each copper μ2-bridged by two oxime ligands in a μ2-η1,η2 fashion. Variable temperature magnetic studies on 1 and 2 show that both compounds are dominated by an antiferromagnetic coupling through the oxime bridges.  相似文献   

14.
Two complexes constructed from aromatic acid and N-heterocyclic ligands have been synthesized by hydrothermal reaction: [Pb(cipt)(NDC)]n (1) [cipt?=?2-(3-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, NDC?=?naphthalene-1,4-dicarboxylic acid] and [Pb(ipm)(BDC)2]n (2) [BDC?=?terephthalic acid, ipm?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-2-methoxyphenol]. Single-crystal X-ray analysis shows that 1 exhibits an interesting arm-shaped chain structure. 1-D ladder chain structure is formed by N–H···O bonding interactions and further into a 2-D network by N–H···O hydrogen bonds and interchain ππ stacking interactions. Complex 2 shows a 2-D butterfly wings structure, which has been rarely reported. The structure in 2 has intermolecular N–H···O interactions, which help in construction of the 3-D framework. In 1, the coordination sphere of Pb(II) is hemi-directed, whereas the Pb(II) geometry in 2 is holo-directed. The solid-state fluorescence spectra of 1 and 2 are also investigated, as well as the ligands cipt and ipm.  相似文献   

15.
Summary. Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

16.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

17.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

18.
Two rare earth carboxylic acid complexes, [Sm(MeBA)3(2,2′-bipy)]2·2(2,2′-bipy) (MeBA = 3-methylbenzoic acid; 2,2′-bipy = 2,2′-bipyridine) (1) and [Pr(MeBA)3(H2O)2]n?n(4,4′-bipy) (4,4′-bipy = 4,4′-bipyridine) (2), have been synthesized under hydrothermal conditions and structurally determined by single-crystal X-ray diffraction. Compound 1 is a dimer and further assembles into an infinite chain, two-dimensional net and three-dimensional supramolecular structure via weak π–π and C–H···π interactions. Some 2,2′-bipy coordinates with Sm and some exist by non-covalent C–H···π interactions. Compound 2 is a 1D infinite chain structure, with adjacent 1D chains connected into a 2D layer structure by O–H···N hydrogen bonds. The two complexes were characterized by elemental analyses, IR, photoluminescence, and TGA. In order to illustrate subtle structural characteristics of intermolecular interactions and magnetic sensitivity of the complex, 2D-IR correlation spectra (2D-IR COS) under magnetic perturbation for 1 were performed.  相似文献   

19.
Two supramolecular complexes Ni[(Py)2C(OH)2]2·(CH3COO)2·4H2O 1 and Co[(Py)2C(OH)2]2·(CH3COO)2·2H2O 2 have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR spectra, and X-ray single-crystal diffraction. The X-ray diffraction analysis indicates that the center metal (Ni2+ and Co2+) ions having the same coordination environments are chelated by two pyridyl N atoms and a hydroxyl O atom of the gem-diol ligand in an octahedral geometry. In 1, the lattice water molecules form infinite single helical chains, while in 2, two lattice water molecules are discrete. In their crystal structures, intermolecular O–H···O and C–H···O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal packing.  相似文献   

20.
A new complex, [Ni(PMFP)2(C2H5OH)2] (HPMFP = 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone), has been synthesized and characterized by elemental analysis, IR, UV, and fluorescence spectra, thermal analysis, and X-ray single crystal diffraction. Its crystal structure is in an orthorhombic system, space group Pbca with cell parameters: a = 15.2269(14) Å, b = 9.3399(9) Å, c = 22.794(2) Å, and Z = 4, S = 1.019. The Ni lies at an inversion center and has a slightly distorted octahedral coordination environment with four oxygens of the pyrazolone rings in the equatorial plane and two ethanols in axial positions. The compound displays O–H···N and weak C(6)–H(6)···O(4) hydrogen bonds. The fluorescent emission is at 539 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号