首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The IR and resonance Raman spectra of the nickel(II) complexes of dibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TAA) and 5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TMTAA) have been measured and compared with ab initio calculations of the vibrational wavenumbers at the B3-LYP level using the LanL2DZ basis set. An excellent fit is found between the experimental and calculated data, enabling precise vibrational assignments to be made. Surface-enhanced resonance Raman spectra were obtained following adsorption on Ag electrodes, with potentials in the range -0.1 to -1.1 V vs Ag/AgCl. There is evidence for contributions from both the electromagnetic and charge transfer (CT) surface enhancement mechanisms. The data indicate that variations in band intensities with electrode potential can be interpreted in terms of the CT mechanism.  相似文献   

2.
3.
Two new mixed ligand complexes of copper(II) with acetylacetonate (acac), 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) belonging to the class of cytotoxic and antineoplastic compounds known as CASIOPEINAS® were synthesized and structurally characterized. Crystals of both complexes [Cu(acac)(bpy)(H2O)]NO3 · H2O (1), [Cu(acac)(phen)Br] (2) contain square pyramidal Cu(II) complex species. In frozen solution both compounds give well resolved EPR spectra with very similar parameters.  相似文献   

4.
13,14-bis(Hydroxyimino)-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]-4, 7-diaza-1,10-dithiacyclododecine[13,14-g]-quinoxaline (H2L) has been prepared from (E,E)-dichloroglyoxime and 12,13-diamino-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]-4,7-diaza-1,10-dithiacyclododecine which was synthesized from 12,13-dinitro-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]4,7-diaza-1,10-dithia cyclododecine. Mononuclear nickel(II) and copper(II) complexes of H2L have a metal-ligand ratio of 1?:?2 and the ligand coordinates through two nitrogen atoms, as do most (E,E)-dioximes. The homotrinuclear [Cu(L)2Cu2(dipy)2](NO3)2 compound coordinates to the other two copper(II) ions through deprotonated oximate oxygens and two 2,2′-dipyridyl as an end-cap ligand to yield the trinuclear structure. The ligand and its complexes have been characterized on the basis of 1H, 13C NMR, IR and MS spectroscopy and elemental analyses.  相似文献   

5.
Syntheses of nickel(II) complexes of the tetraaza macrocycles 2,7-dichloro-1,3,6,8-tetraazacyclodecane (DCCD) and 2,8-dichloro-1,3,7,9-tetraazacyclododecane (DICD) and a copper(II) complex of 2,6,8,12,13,17-hexaazabicyclo[5.5.5]heptadecane (HBCH) are reported in the template condensation of trichloromethane with 1,2-diaminoethane or 1,3-diaminopropane. Formulation of the synthesized products [Ni(DCCD)(H2O)2]Cl2, [Ni(DICD)(H2O)2]Cl2?·?H2O, and [Cu3(HBCH)(H2O)6]Cl6, and the metal-free ligand hydrochloride HBCH?·?6HCl has been confirmed by elemental analyses, conductivity measurements, and spectral studies. Potentiometric studies of nickel(II) and copper(II) complexes of HBCH and structurally similar 2,5,8,10,13,16,17,20,23-nonaazabicyclo[7.7.7]tricosane (NACT, earlier derived from trichloromethane and diethylenetriamine) have also been performed in the structural support of HBCH. In 1?:?1, metal?:?HBCH solution, copper(II) is coordinated to four N-donors of two-HN(CH2)3NH– groups of the ligand in a non-planar tetraaza cavity. The equilibrium constant value (log?K?=?15.41) for the reaction Cu2+?+?A???CuA2+ (A?=?HBCH) is in favor of the cyclic structure of the ligand. A high value (log?K?=?23.27) for corresponding reaction in the NACT system is due to conformational change in the ligand, where copper(II) organizes the macrocycle to form a nearly planar cavity in which the cation fits well.  相似文献   

6.
The potentially pentadentate chelate 2,6-diacetylpyridine-bis(N-methyl-S-methyldithiocarbazate) (Nmedapsme) has been synthesized and structurally characterized by X-ray diffraction. Its reactions with nickel(II) salts did not lead to pentadentate coordinated ligand complexes but ternary complexes of general formula, [Ni(Nmedapsme)(nmesme)L]X·H2O (L = Br, I; X = I, BF4) where Nmedapsme binds as a tridentate and nmesme = N-methyl-S-methyldithiocarbazate. The related ternary nickel(II) complexes of formula, Ni(Nmedapsme)(nmetsc)Br2 has also been prepared and characterized. X-ray crystal structures of [Ni(Nmedapsme)(nmesme)I]I·H2O and [Ni(Nmedapsme)(nmesme)Br]BF4·H2O revealed that, in these complexes, the Nmedapsme ligand acts as a tridentate NNN donor while the distal S-donors are not coordinated. The bidentate (NS) ligand, nmesme coordinates to the nickel(II) ion via the amino nitrogen and the thione sulfur atoms, the sixth coordination site is occupied by an anion. In both complexes, the nickel(II) ion adopts a distorted octahedral configuration. The complex [Cu(nmesme)2(ONO2)]NO3 was obtained from an unsuccessful attempt to complex copper(II) with Nmedapsme. Hydrolysis of the parent Schiff base Nmedapsme occurred during complexation. An X-ray crystallographic structure analysis shows that the complex, [Cu(nmesme)2(ONO2)]NO3 has an approximately square-pyramidal geometry with the two nmesme ligands coordinated to the copper(II) ion as NS bidentate chelating agents via the amino nitrogen and thione sulfur atoms and the fifth coordination position of copper(II) is occupied by a monodentate nitrate ligand.  相似文献   

7.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

8.

Oxovanadium(IV), isothiocyanatomanganese(III), cyanocobalt(III) and cobalt(II) complexes of tetraaza[14]annulene appended with two crown ethers at 2,3- and 11,12-positions have been prepared. Cation complexation behavior of these cavity-bearing tetraaza[14]annulene complexes has been investigated by optical absorption methods. The cation K + , which necessitates two crown ether cavities for complexation, induces dimerization of the tetraaza[14]annulene complexes, whereas the Na + does not. Formation of the sandwich complexes due to dimerization is hindered by the steric interactions involving the axial ligand as judged by the blue shift of the intense band around 385-425 nm. Judging from its ESR spectrum, the cobalt(II) complex becomes a monomeric dioxygen complex of a 1 : 1 molar ratio in the presence of O 2 and pyridine at 77 K.  相似文献   

9.
Cu(II) complexes of 14- and 16-membered tetraaza macrocyclic ligands have been encapsulated in nanopores of zeolite-Y by a two-step process in the liquid phase: (1) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, and 1,3-diaminobenzene); [Cu(N–N)2]2+–NaY; in the nanopores of the zeolite-Y and (2) in situ condensation of the copper(II) precursor complex with ethylcinnamate. The new host–guest nanocomposite materials were characterized by chemical analysis and spectroscopic methods. The “neat” and encapsulated complexes exhibit good catalytic activity in the oxidation of ethylbenzene at 333 K, using tert-butyl hydroperoxide as the oxidant. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C–H bond activation takes place both at benzylic and aromatic ring carbon atoms.  相似文献   

10.
New N-substituted cyclam ligands 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-1,4,8,11-tetraazacyclotetradecane, and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (L1–L4) were synthesized and mononuclear copper(II) and nickel(II) complexes prepared. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-alkylation causes red shifts in the λmax values of the complexes. Copper(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.04 to ?1.00 V. The nickel(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.18 to ?1.30 V and one-electron, quasi-reversible oxidation waves in the range +1.20 to +1.40 V. The reduction potential of the copper(II) and nickel(II) complexes of the ligands L1 to L2 and L3 to L4 shift anodically on N-alkylation. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff?=?1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and on the hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalyst were carried out. The tetra-N-substituted complexes have higher rate constants than the corresponding disubstituted complexes.  相似文献   

11.
Three ternary copper(II) complexes, [Cu(phen)(L-phe)Cl]·2H2O, [Cu(phen)(L-leu)Cl]·4½H2O, and [Cu(phen)(L-tyr)Cl]·3H2O, and four binary copper(II) complexes, [Cu(phen)Cl2], Cu(L-phe)2·½H2O, Cu(L-leu)2·½H2O, and Cu(L-tyr)2·H2O (where phen = 110-phenanthroline, L-phe = L-phenylalanine, L-tyr = L-tyrosine, L-leu = L-leucine and Cl- = chloride), were synthesized and characterized by elemental analysis, spectroscopic techniques (FTIR, UV–visible, fluorescence spectroscopy), magnetic susceptibility, molar conductivity, and lipophilicity measurement. X-ray diffraction determination of a single crystal of [Cu(phen)(L-tyr)Cl] showed two independent molecules in the asymmetric unit, each with the same distorted square pyramidal geometry about copper(II). p-Nitrosodimethylaniline assay revealed that the three ternary complexes were better inducers of reactive oxygen species over time than binary complexes, CuCl2, and free ligands. All the copper(II) complexes in this series inhibited the three proteolytic activities in the order Trypsin-like > Caspase-like > Chymotrypsin-like. In terms of anticancer properties, the copper(II)-phen complexes had GI50 values of less than 4 μM against MCF-7, HepG2, CNE1 and A549 cancer cell lines, more potent than cisplatin.  相似文献   

12.
Abstract  The monoligand complexes of the formula M(HPLGT)(NCS)2 (M = Cu(II), Zn(II)) in which the ligand tridentate ONO pyridoxilidene Girard-T hydrazone, [H3PLGT]Cl2 · 2H2O, was coordinated in neutral doubly deprotonated form were synthesized. Also, the first complexes with the ligand coordinated in triply deprotonated monoanionic form of the formula [Cu(PLGT)N3] and [Co(PLGT)(NO2)2NH3] · 3H2O are reported. The single crystal X-ray analysis of [Cu(HPLGT)(NCS)2] showed that Cu(II) is placed in a square-pyramidal surrounding consisting of one tridentate Schiff base and one NCS group in the basal plane and the other NCS group in the apical position. Intermolecular hydrogen bonds leading to centrosymmetrical dimerization of these complexes were discussed. In the reaction of Girard-T and Hacac in the presence of CuCl2, a mixture of single crystal complexes of the composition [Cu(3,5-Me2pz)2Cl2]2 and [Cu(acac)2] · 2[Cu(3,5-Me2pz)2Cl2] was obtained and X-ray analysis of the latter one was reported. Index abstract  Crystal structure of the Cu(II) complex with pyridoxilidene Girard-T hydrazone was analyzed. Additional two Cu(II) complexes obtained by the reaction of Girard-T reagent and Hacac in the presence of CuCl2 were also studied by single crystal X-ray analysis.   相似文献   

13.
The reaction of Cu(ClO4)2·6H2O and Cd(ClO4)2 with di-(2-picolyl)sulfur (dps) leads to the formation of mononuclear complexes [Cu(dps)(H2O)(ClO4)](ClO4) (1) and [Cd(dps)2](ClO4)2 (2). The crystal structure of 1 exhibits a distorted square pyramidal geometry, coordinated by one sulfur and two nitrogen atoms from the dps ligand, one water molecule and one perchlorate oxygen atom. For 2, the environment around cadmium atom is in a distorted octahedron with four nitrogen and two sulfur atoms from the dps ligand. Cyclic voltammetric data show that complexes undergo two waves of a one-electron transfer corresponding to M(II)/M(III) and M(II)/M(I) processes. Spectral and electrochemical behaviors of the complexes are also discussed.  相似文献   

14.
Five new mononuclear zinc(II) complexes containing ligands with extended planar phenanthroline moieties (dipyrido‐[3,2‐a:2′,3′‐c]phenazine (dppz) or dipyrido[3,2‐d:2′,3′‐f] quinoxaline (dpq)), namely [Zn(dppz)(acac)2]⋅CH3OH ( 1 ), [Zn(dppz)(dbm)(OAc)] ( 2 ), [Zn(dpq)(dbm) (OAc)] 1.5H2O ( 3 ), [Zn(dpq)(tfnb)(OAc)] ( 4 ) and [Zn(dpq)(tfnb)2] ( 5 ), where acac = acetylacetonate, tfnb = benzoyltrifluoroacetone and dbm = dibenzoylmethane, were synthesized and structurally characterized. The binding ability of complexes 1 – 5 with calf thymus DNA was investigated by spectroscopic titration methods and viscosity measurements. Results indicate that all complexes bind to calf thymus DNA via intercalative mode, and the DNA binding affinities of dppz complexes 1 and 2 are apparently stronger than those of dpq complexes 3 – 5 . DNA photocleavage experiments reveal that these complexes are efficient DNA cleaving agents and they are more active in UV‐A (365 nm) than in visible light. In particular, the in vitro cytotoxicity of the complexes for human cancer cell line A549 demonstrates that the five compounds have anticancer activity with low IC50 values. Meanwhile, interaction of the complexes with bovine serum albumin investigated using UV–visible and fluorescence methods indicates that all complexes can quench the intrinsic fluorescence of bovine serum albumin in a static quenching process.  相似文献   

15.
Two bis(saccharinato)copper(II) complexes with 2-aminomethylpyridine (ampy) and 2-aminoethylpyridine (aepy) have been prepared and characterized by elemental analyses, IR and electronic spectroscopy, magnetic measurements and single-crystal X-ray diffraction. The copper(II) ion in trans-[Cu(sac)2(ampy)2] has ?1 site symmetry and is octahedrally coordinated by two neutral ampy and two anionic sac ligands, whereas the copper(II) ion in [Cu(sac)2(aepy)(H2O)] is five-coordinate with a distorted square-pyramidal coordination geometry. Both ampy and aepy behave as bidentate (N,N′) chelating ligands, while the saccharinate anion (sac) in the title complexes is N-coordinated. IR spectra of both complexes display typical absorption bands of bidentate aminopyridines and N-bonded sac ligands. Thermal decomposition behavior of the complexes is described in detail.  相似文献   

16.
Three new organic hosts are described that contain a tetraaza[14]annulene core to which two crown ether voids are attached. These hosts include a free base tetraaza[14]annulene and/or its complexes with benzo-15-crown-5 rings. The crown tetraaza[14]annulene is synthesized from tetraaza[14]annulene and 4′-chloroformylbenzo-15-crown-5. Its nickel(II) and copper(II) complexes are prepared in a similar manner as above. In solution the compounds do not tend to form aggregates. However, aggregation is affected by the presence of alkali-metal salts, which coordinate to the crowns. Li+ and Na+ cations with diameters that match the diameters of the crown ether rings form 1:2 host-guest complexes. Complexes with 2:2 host-guest stoichiometry are formed when the diameters of K+ and Cs+ cations exceed that of the crown ether rings. Nevertheless, it is weak for the present macrocycle and its complexes to be inclined to form dimers owing to the steric hindrance of the substituent groups and owing to restraining the rotation of the carbonyl bond connecting the crown ether group.  相似文献   

17.
Pyridil bis(N(4)‐substituted thiosemicarbazones) have been prepared in which the substituents in place of the NH2 group in the thiosemicarbazone moieties are piperidinyl (H2Plpip), hexamethyleneiminyl (H2Plhexim), diethylaminyl (H2Pl4DE), and dipropylaminyl (H2Pl4DP). IR, electronic, mass, and ESR spectra of their copper(II) complexes are reported. Crystal structure determinations of H2Pl4DE and three of the copper(II) complexes of formula [Cu(Plpip)], [Cu(Plhexim)] and [Cu(Pl4DE)]2 · 2[Cu(Pl4DE)], are included. H2Pl4DE lacks hydrogen bonding between the thiosemicarbazone moieties, but each moiety is in the Z configuration form with hydrogen bonding from the thiosemicarbazone moieties to the pyridyl nitrogen atoms. The crystal used for the structure determination of [Cu(Plhexim)] was isolated from an electrochemical preparation. In all the new compounds the deprotonated ligands are N,N,S,S‐tetradentate, coordinating to the copper(II) centre through their azomethine nitrogen atoms and their thiocarbonyl sulfur atoms.  相似文献   

18.
Tuning reaction temperatures as well as the variation in starting copper salts and solvents led to the formation of a new series of Cu(II) coordination compounds with 2,3-bis(2-pyridyl)pyrazine (dpp): a mononuclear [Cu(acac)(dpp)(NO3)] (1) complex, two dinuclear [Cu2(acac)2(dpp)(NO3)(H2O)]NO3 (2) and [Cu2(Hdpp)2(ox)(Cl)2(H2O)2]Cl2·6(H2O) (4) complexes, and four coordination polymers {[Cu4(dpp)2(ox)(Cl)6]}n (3), {[Cu4(dpp)2(ox)(NO3)6(H2O)2]∙1.2(H2O)}n (5), {[Cu(dpp)(NO3)](NO3)·(H2O)}n (6) and {[Cu(dpp)(SO4)(H2O)2]}n (7), where acac = acetylacetonate, ox2− = oxalate. Remarkably, the treatment of Cu(II) chloride dihydrate with dpp in methanol solution led to an unusual in situ condensation of dpp with acac to produce [Cu2(acdpp)2(Cl)4]·2(MeOH) (8). The structure of 1 consists of neutral, mononuclear [Cu(acac)(dpp)(NO3)] units with acac and dpp acting as bidentate ligands. In 2, the dpp ligand coordinates in a bis-chelating mode to two Cu(II) ions and bridges them into a dimeric entity, whereas an oxalate linker joins [Cu(Hdpp)(Cl)2(H2O)]+ units into a dimer in 4. Compounds 3, 5, 6 and 7 are 1D chain coordination polymers, which incorporate two symmetry independent metal centers and different bridging ligands: Hdpp+ as a protonated cationic or dpp as a neutral chelating ligand and oxalate, Cl anions or sulfate di-anions as bridging ligands. Magnetic studies were performed on samples 1 and 2, and the analysis reveals a very weak magnetic exchange coupling mediated via the dpp ligand.  相似文献   

19.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   

20.
New Co(II) and Cu(II) diphenate complexes with 4-methylimidazole were synthesized and characterized through elemental analysis, magnetic susceptibilities, and IR spectroscopic studies. The crystal structures of [Co(dpa)(5-meim)4]·2H2O (1) and [Cu(dpa)(4-meim)(5-meim)2]·H2O (2) were determined by single-crystal X-ray diffraction (H2dpa = diphenic acid, 4-meim = 4-methylimidazole and 5-meim = 5-methylimidazole). In 1, Co(II) has distorted octahedral geometry with four 5-meim and one diphenate ligands. Complex 2 has distorted trigonal bipyramidal geometry with one 4-methylimidazole, two 5-methylimidazole, and one diphenate ligands. In the complexes, the diphenate is coordinated to the metal(II) ions via the deprotonated oxygens of carboxylate as a bidentate ligand. The 4-meim and 5-meim linkage isomers within the same complex are found, and this complex is an unusual example. Moreover, another interesting feature of 2 is the presence of C–H···Cu weak hydrogen-bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号