首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two W/Mo complexes, [Et3NH]2[WO2(C10H6O2)2] (1) and [Et3NH]2[MoO2(C10H6O2)2] (2), were synthesized by the reaction of Na2WO4?·?2H2O and (NH4)2Mo2O7?·?4H2O with 2,3-DHN (DHN?=?dihydroxynaphthalene) and triethylamine, and characterized by X-ray diffraction and IR. The two complexes exhibit chiral octahedral geometry at central metals, although the overall structure is racemic. Single crystals of 1 are more difficult to obtain than for 2. The molybdenum complex can be easily isolated at room temperature (around 25°C), while the tungsten one needs to be isolated under 15°C, otherwise, the quality of crystal will be poor, leading to disorder. The structures of these two complexes are chiral and enantiomorphous to each other.  相似文献   

2.
The structure of catena-[tris(aquo-O)(nitrato-O,O′)(µ-hydrogen pyrazine-2,3-dicarboxylato-O,NO′,N′)calcium(II)][tetra(aquo-O)(μ-hydrogen pyrazine-2,3-dicarboxylato-O,NO′,N′) calcium(I)] nitrate, {Ca[H(2,3-PZDC)](H3O)3(NO3)}{Ca[H(2,3-PZDC)](H2O)4}+ (NO3)?, is composed of molecular ribbons in which calcium atoms are bridged by both N,O-bonding moieties of singly deprotonated ligand molecules. The hydrogen atom donated by one carboxylic group is linked by a short intramolecular hydrogen bond of 2.37 Å to an oxygen atom of the second carboxylic group of the same ligand. Two crystallographically independent Ca(II) ions exhibit different coordination modes. One is coordinated by two bonding moieties of the bridging ligand molecules, three water oxygen atoms and two oxygen atoms of a nitrate ligand. The other calcium ion is chelated by two bonding moieties donated by the bridging ligand molecules and four water oxygen atoms, forming a positively charged assembly with a nitrate anion located nearby. The coordination polyhedron of the first calcium ion is a strongly deformed bicapped pentagonal bipyramid with nine-coordinated atoms; the second calcium ion is also in a strongly deformed pentagonal bipyramid with one apex on one side of the equatorial plane and two apices on the other. Coordinated water oxygen atoms act as donors in a hydrogen-bond network.  相似文献   

3.
Two dinuclear complexes [M2(EGTB)(NO3)2(DMF)2](NO3)2 · 2DMF (M = Cu, 1; Co, 2) were synthesized and structurally characterized, EGTB is N,N,N′,N′-tetrakis (2-benzimidazolylmethyl)-1,4-diethylene amino glycol ether, and DMF is dimethylformamide. The polyphenol oxidase (PPO) activities of 1 and 2 on pyrogallol oxidation have been investigated, showing that the rate constants k cat increase with increases of reaction temperatures and pH.  相似文献   

4.
Five-coordinate Schiff-base Zn complexes (1,2-cyclohexanediamino-N,N′-bis(salicylidene)) zinc-pyridine 1 and (1,2-cyclohexanediamino-N,N′-bis(3,5-di-tert-butylsalicylidene)) zinc-pyridine 2 were synthesized and the structures of 1 and 2 have been determined by single-crystal X-ray analysis. All Zn atoms are five-coordinate in both structures. Both complexes exhibit interesting structures based on intermolecular π–π stacking and hydrogen bond interactions. Complex 1 has a one-dimensional molecular chain structure via π–π stacking interaction, while complex 2 has an interesting lattice structure (with cavities with dimensions 10.9?×?6.9?Å) formed through intermolecular π–π stacking and hydrogen bond interactions. 1 and 2 are compared and characterized by MS, elemental analysis, IR, UV-Vis and Photoluminescence (PL). Fluorescence spectra show that the maximal emission wavelength of 1 and 2 are 454?nm, and 480?nm, respectively, upon radiation by UV light. Cyclic voltammetry performed on 1 and 2 indicate a dependence of the cathodic potentials upon conformational and electronic effects. Electronic spectral properties of 1 and 2 were studied by TD-DFT methods. The fluorescent emission of these complexes originates from ligand-centred π–π? transitions. The Zn (II) centres play a key role in enhancing the fluorescent emission of the ligands.  相似文献   

5.
Four copper(II) coordination polymers, {[Cu(pz(COO)2)(H2O)]4·HBr}n (1), {[Cu(pz(COO)2)(NH3)2]·H2O}n (2), {[Cu3H2(pz(COO)2)4(H2O)3]·2H2O}n (3) and {[Cu2(pz(COO)2)2(NH3)2(H2O)3][Cu(pz(COO)2)(NH3)(H2O)2][Cu(pz(COO)2)(NH3)(H2O)]·2H2O}n (4) were synthesized using pyrazine-2,3-dicarboxylic acid, CuBr2, 2-(2-aminoethylamino)ethanol/triethanol amine/ammonia in a methanol:water (1:1) solution, and the mixed ligand complexes were characterized by spectroscopic methods, thermal and elemental analysis, and magnetic susceptibility. Complexes 2 and 4 were also characterized by means of single crystal X-ray crystallography. The characterizations show that the complexes have polynuclear molecular structures, except for complex 2, and all of the complex structures form polymeric chains. Complex 4 has a pseudo-merohedral twin structure.  相似文献   

6.
A one-pot, three-component reaction of 2,3-dihydroxynaphthalene, aromatic aldehydes, and cyclic 1,3-dicarbonyl compounds in the presence of formic acid catalyst under solvent-free conditions provides access toward a new class of tetrahydrobenzo[a]xanthen-11-ones and naphthopyranopyrimidines. The scope of the process was explored under two different reaction conditions resulting in the generation of title compounds in high yields. Moreover, the key advantages of this process are cost effectiveness of catalyst, short reaction times, easy workup, and purification of products by nonchromatographic methods.  相似文献   

7.
Two new complexes, {[Pr(2-IBA)3?·?2,2′-bipy]2·[Pr(2-IBA)3?·?2,2′-bipy]2?·?0.5C2H5OH?·?H2O} (1) and [Pr(2-IBA)3?·?phen]2 (2) (2-IBA?=?2-iodobenzoate; 2,2′-bipy?=?2,2′-bipyridine; phen?=?1,10-phenanthroline) were synthesized, and their crystal structures were determined by X-ray diffraction. Complex 1 consists of two binuclear molecules [Pr(2-IBA)3?·?2,2′-bipy]2 (a) and [Pr(2-IBA)3?·?2,2′-bipy]2 (b), half uncoordinated ethanol and one uncoordinated water. In the two molecules (a) and (b), the coordination environment of central ions is similar. The Pr13+ ion in molecule (a) and Pr23+ ion in molecule (b) are nine-coordinate with seven oxygen atoms from five 2-IBA ligands and two nitrogen atoms from one 2,2′-bipy molecule. The crystal structure of complex 2 is similar to that of binuclear [Pr(2-IBA)3?·?2,2′-bipy]2 in complex 1.  相似文献   

8.
Reaction of (CH3C5H4)2LnCl(THF) with NaNHAr in a 1:1 molar ratio in THF afforded the amide complexes (CH3C5H4)2LnNHAr(THF) [(Ar = 2,6-Me2C6H3, Ln = Yb (I), Y (III); Ar = 2,6-iPr2C6H3, Ln = Yb (II)]. X-ray crystal structure determination revealed that complexes I-III are isostructural. The central metal in each complex coordinated to two methylcyclopentadienyl groups, one amide group and one oxygen atom from THF to form a distorted tetrahedron. Complexes I-III and a known complex (CH3C5H4)2YbNiPr2(THF) IV all can serve as the catalysts for addition of amines to nitriles to monosubstituted N-arylamidines. The activity depended on the central metals and amide groups, and the active sequence follows the trend IV ≈ III < I < II.  相似文献   

9.
To investigate the influence of bridgehead-C functionality in diiron dithiolate complexes on the molecular structure and electrocatalytic properties of [FeFe]-hydrogenase models, three new bridgehead-C-functionalized model complexes 1–3 have been synthesized and structurally characterized. Treatments of parent complex [(μ-SCH2)2CHCO2H][Fe2(CO)6] (A) with the esterification agents o-MeC6H4OH, p-ClC6H4OH, or p-HOC6H4CHO in the presence of 4-dimethylaminopyridine and dicyclohexylcarbodiimide in CH2Cl2 at room temperature resulted in formation of [(μ-SCH2)2CHCO2R][Fe2(CO)6] (R = o-MeC6H4–, 1; p-ClC6H4–, 2; p-OHCC6H4–, 3) in 53–55% yields. The new complexes 1–3 were characterized by elemental analysis, IR and NMR spectroscopy, and especially determined by X-ray crystallography. The electrochemical properties of 1–3 and the electrocatalytic H2 evolution catalyzed by 1 have been investigated by cyclic voltammetry, where 1 is a catalyst for HOAc proton reduction to H2 under electrochemical conditions.  相似文献   

10.
Eight new antimony (III) complexes containing dithiocarbamate ligands (R2NCS2)2SbBr [R2NCS2 = OC4H8NCS2 (1), C2H5NC4H8NCS2 (2), Me2NCS2 (3), C4H8NCS2 (4)] and (R2NCS2)3Sb[R2NCS2 = C5H10NCS2 (5), Bz2NCS2 (6), Et2NCS2 (7), (HOCH2CH2)2NCS2 (8)] have been synthesized by the reactions of antimony (III) halides with dithiocarbamate ligands in 1:2 or 1:3 stoichiometries. All the complexes have been characterized by elemental analysis, melting point as well as spectral [IR and NMR (1H and 13C)] studies. The crystal structures of complexes 1, 5 and 8 have been determined by X-ray single crystal diffraction, and their electrochemical character has also been studied.  相似文献   

11.
Four diorganotin(IV) complexes [(Me)2Sn(L1)(CH3COO)]·CH3CH2OH (1), [(Ph)2Sn(L1)(CH3COO)]·CH3CH2OH (2), [(Me)2Sn(L2)Cl] (3) and [(Ph)2Sn(L2)(CH3COO)] (4) where HL1 = 2-benzoylpyridine N(4)-phenylthiosemicarbazone and HL2 = 2-acetylpyrazine N(4)-phenylthiosemicarbazone have been synthesized and characterized by elemental analysis, IR MS, 1H NMR and single-crystal X-ray diffraction studies. Schiff bases in their deprotonated forms coordinate to tin(IV) via pyridine/pyrazine nitrogen atom and the nitrogen atom and sulfur atoms of the thiosemicarbazone moiety. The tin atom is seven-coordinated in 1, 2 and 4 containing one acetato group, respectively, and six-coordinated in 3 containing one chloride ion. Biological studies, carried out in vitro against selected bacteria and K562 leukaemia cells, respectively, have shown that different substituted groups attached at the thiosemicarbazone moieties and different diorganotin(IV) groups showed distinctive differences in the biological property.  相似文献   

12.
Reactions of equimolar solutions of copper(I) halides with 1-methyl-1,3-imidazoline-2-thione (SC4H6N2) in acetonitrile have yielded a trinuclear complex, {Cu31-Br)3(μ-SC4H6N2)3} · CH3CN 1, and 1D polymer, {Cu2(μ-I)2(μ-SC4H6N2)2}n2. The thio-ligands/halogens adopt μ-S, η1-X or μ-X modes. There is weak interaction between trinuclear units {Cu···Br, 3.025 Å} and Cu···Cu contacts lie in the range, 2.974(2)–3.650(2) Å. Polymer 2 has alternating Cu2I2 and Cu2S2 cores involving sulfur/iodine bridging in a twisted ribbon type arrangement with short Cu···Cu distances {2.6912(9) and 2.785(9) Å}, respectively. The polynuclear complexes in dimethyl sulfoxide exhibit intense fluorescent bands {λem = 319 (1) and 322 (2)}.  相似文献   

13.
The structures of [Cu(2-Brbz)2(4PM)2(H2O)] (1) and [Cu(2-Brbz)2(NIA)2] · 2H2O 2 [where 2-Brbz is the 2-bromobenzoate anion, 4-PM is the 4-pyridylmethanol and NIA is nicotinamide] have been determined by X-ray and characterized by EPR spectroscopy. The Cu2+ cation in 1 is coordinated by a pair of oxygens from monodentate 2-bromobenzoate anions by a pair of pyridine nitrogens from monodentate 4-pyridylmethanol ligands and finally by a water forming a tetragonal-pyramidal coordination polyhedron. The Cu2+ cation in 2 is coordinated by two pairs of oxygens from the asymmetric bidentate 2-bromobenzoate anions and by a pair of pyridine nitrogen atoms from the monodentate nicotinamide in trans positions, forming an extremely elongated bipyramid. The molecules of both complexes are linked by O–H ··· O, C–H ··· O and for 2 by N–H ··· O hydrogen bonds, which create three-dimensional hydrogen-bonding networks. EPR spectra of 1 and 2 are in agreement with X-ray data. Nicotinamide as well as 4-pyridylmethanol are suitable ligands for construction of hydrogen bonding coordination polymers.  相似文献   

14.
The crystal structures of the lattice inclusion complexes of gossypol with benzene and chloroform have been determined by X-ray structure analysis. The crystals of (C30H30O8)2 · C6H6 (GPBNZ) are triclinic, space groupPI,a = 11.241(3),b = 14.986(4),c = 17.380(4) Å, = 98.89(2), = 99.86(2), = 98.91(2)°,V = 2800(2) Å3,Z = 2,D x = 1.32 g cm–3, (CuK ) = 7.35 cm–1. The structure has been refined to a finalR value of 0.050 for 6146 observed reflections. The crystals of C30H30O8·CHCl3 (GPCLF) are monoclinic, space groupC2/c,a = 28.464(4),b = 8.948(1),c = 26.480(4) Å, = 108.93(2)°,V = 6380(2) Å3,Z = 8,D x = 1.33 g cm–3, (CuK) = 30.42 cm–1. The structure has been refined to a finalR value of 0.100 for 1980 observed reflections.GPCLF forms an intercalate-type structure and GPBNZ a clathrate-type structure. There are, however, some similarities in the packing mode of the host molecules in these two structures. On a basis of comparison of the crystal packing of GPCLF and GPBNZ one can postulate that in the desorption process of the intercalate-type GPCLF complex an intermediate clathrate structure of the GPBNZ-type should be formed.  相似文献   

15.
Six new organoantimony(V) complexes containing various isomers of fluoromethylbenzoate ligands [RC6H3COO]2SbPh3 and [RC6H3COO]SbPh4 [R = 3-F-4-(CH3) (1, 4), 4-F-2-(CH3) (2, 5), 5-F-2-(CH3) (3, 6)] have been synthesized by the reactions of triphenylantimony(V) dichloride or tetraphenylantimony(V) bromide with various isomers of fluoromethylbenzoate ligands in 1:2 or 1:1 stoichiometries. All the complexes have been characterized by elemental analysis, IR and NMR [1H, 13C and 19F] studies. The crystal structures of complexes 1, 3, 4, 5 and 6 have been determined by X-ray single crystal diffraction. The structure of complexes show that the five-coordinated antimony(V) atom adopts a distorted trigonal bipyramidal geometry. Furthermore, weak but significant intermolecular C–H···O, C–H···F hydrogen bonds, C–H···pi stacking lead to aggregation and assembly of these complexes into 1D and 2D supramolecular frameworks.  相似文献   

16.
Equilibria of Mo(VI) in acid aqueous solutions with excess of 2,3-dihydroxynaphthalene (DHN)c DHN /c Mo = 2.3–107 (I = 0.6 mol 1–1 (NaClO4), 0.6% v/v ethanol) were studied spectrophotometrically. Formation constants of MoO2R 2 2– (logK 012 = 5.89±0.01) and presumed MoO2(OH)(OH2)R (logK 111 = 7.79±0.01) chelates were evaluated using SQUAD-G program.  相似文献   

17.
Condensation of (R)-2,2′-diamino-1,1′-binaphthyl or (R)-6,6′-dimethylbiphenyl-2,2′-diamine with 2 equiv of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (R)-N,N′-bis(pyridin-2-ylmethylene)-1,1′-binaphthyl-2,2′-diimine (1), and (R)-N,N′-bis(pyridin-2-ylmethylene)-6,6′-dimethylbiphenyl-2,2′-diimine (3), respectively, in good yields. Reduction of 1 with an excess of NaBH4 in a solvent mixture of MeOH and toluene (1:1) at 50 °C gives (R)-N,N′-bis(pyridin-2-ylmethyl)-1,1′-binaphthyl-2,2′-diamine (2) in 95% yield. Rigidity plays an important role in the formation of helicate silver(I) complexes. Treatment of 1, or 3 with 1 equiv of AgNO3 in mixed solvents of MeOH and CH2Cl2 (1:4) gives the chiral, dinuclear double helicate Ag(I) complexes [Ag2(1)2][NO3]2 (4) and [Ag2(3)2][NO3]2 · 2H2O (6), respectively, in good yields. While under the similar reaction conditions, reaction of 2 with 1 equiv of AgNO3 affords the chiral, mononuclear single helicate Ag(I) complex [Ag(2)][NO3] (5) in 90% yield. [Ag2(1)2][NO3]2 (4) can further react with excess AgNO3 to give [Ag2(1)2]3[NO3]2[Ag(CH3OH)(NO3)3]2 · 2CH3OH (7) in 75% yield. All compounds have been fully characterized by various spectroscopic techniques and elemental analyses. Compounds 1 and 5-7 have been further subjected to single-crystal X-ray diffraction analyses.  相似文献   

18.
An easy and inexpensive three-step synthesis of new 2,3-dimethyl-1,4-diphenylcyclopentadiene (3) ligand and the titanium and zirconium homometallocene dichlorides [TiCl25-C5H-2,3-Me2-1,4-Ph2)2] (4), [ZrCl25-C5H-2,3-Me2-1,4-Ph2)2] (5), and the mixed ligand zirconium complex [ZrCl25-C5H-2,3-Me2-1,4-Ph2)(η5-C5H5)] (6) prepared thereof are described. The polymerization of ethene using 4-6/MAO catalysts revealed that zirconocene complexes 5 and 6 displayed moderate and high activity, respectively, whereas the titanium catalyst 4/MAO was inactive. The crystal structures of 4 and 5 were determined by X-ray crystallography.  相似文献   

19.
Two new compounds containing the possible Fe(III) spin-crossover cation, [Fe(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine), and nickel bis(dithiolene) anions have been synthesized. Both are 1 : 1 salts [Fe(qsal)2][Ni(dddt)2] · CH3CN · CH3OH (1) and [Fe(qsal)2][Ni(pddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate; pddt = 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate). They have been characterized by X-ray crystal structure determination, elemental analysis, UV-Vis spectra and magnetic susceptibility measurements. The UV–Vis spectra are dominated by [Ni(L)2]? (1, L = dddt; 2, L = pddt). Magnetic studies show antiferromagnetic interaction in 1 from intermolecular S···S contacts and π–π stacking interactions, while the antiferromagnetic interaction in 2 is very weak.  相似文献   

20.
Summary Cyclic 1,3-diketones like cyclopentane-1,3-dione, cyclohexane-1,3-dione, and 5,5-dimethylcyclohexane-1,3-dione react with 1,8-diaminonaphthalene to afford new condensed heterocyclic spiro systems.
Kondensation von 1,3-Diketonen mit 1,8-Diaminonaphthalin: Synthese vonBis(2,3-dihydroperimidin-2-spiro)cycloalkanen
Zusammenfassung Cyclische 1,3-Diketone wie Cyclopentan-1,3-dion, Cyclohexan-1,3-dion und 5,5-Dimethylcyclohexan-1,3-dion reagieren mit 1,8-Diaminonaphthalin zu neuen kondensierten heterocyclischen Spiranen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号