首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new soluble vic-dioxime ligands, 4-isopropylanilineglyoxime (L1H2) and 4-benzylpiperidineglyoxime (L2H2) were prepared by reacting 4-isopropylaniline and 4-benzylpiperidine with anti-chloroglyoxime. Ten metal complexes were obtanied by reacting both ligands with Cu(II),Ni(II),Co(II), Zn(II), and Cd(II) cations. The ligands and their metal complexes were elucidated by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR and also magnetic moments of the complexes were determined. The text was submitted by the authors in English.  相似文献   

2.
In this study, three new vic-dioximes, [L1H2], N-(5-chloro-2-methoxyphenyl)amino-1-acetyl-1-yclohexenylglyoxime, [L2H2],N-(3-chloro-4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylgly-oxime and [L3H2], N-(3-chloro-2-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II) and Co(II) salts. The structures of these new compounds (ligands and complexes) were characterized with FT-IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrophotometer measurements, thermal methods (TGA), 1H NMR and 13C NMR spectral data and elemental analyses.  相似文献   

3.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

4.
In this study, four different new vic-dioximates, [L1H2] N-(4-ethylphenyl)amino-biphenylglyoxime, [L2H2] N-(4-butylphenyl)aminobiphenylglyoxime, [L3H2] N-(4-aminoacetanilide)aminobiphenylglyoxime, and [L4H2] N-(thiazol-2-yl-aminobiphenylglyoxime are synthesized from anti-4′-biphenylchloroglyoxime and the corresponding substituted aromatic amines. The Co(II), Ni(II), and Cu(II) complexes of these ligands are prepared. The structures of these new ligands and their complexes are proposed based upon IR, 1H, and 13C NMR spectral data, mass spectroscopy, magnetic susceptibility measurement, and elemental analyses. The text was submitted by the authors in English.  相似文献   

5.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

6.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

7.
Complexes of two series of Schiff base ligands, H2La and H2Lbderived from the reaction of 2,6-diacetyl pyridine with semicarbazide, H2La and thiosemicarbazide, H2Lb, with the metal ions, Co(II), Ni(II), Cu(II), VO(IV) and UO2(VI) have been prepared. The ligands are characterized by elemental analysis, IR, UV–vis and 1H NMR. The structures of the complexes are investigated with the IR, UV–vis, X-band ESR spectra, 1H NMR and thermal gravimetric analysis as well as conductivity and magnetic moment measurements. The IR-spectra reveal the presence of variable modes of chelation for the investigated ligands. A variety of binuclear or mononuclear complexes were obtained with the two ligands in tri-, tetra or pentadentate forms. The bonding sites are the pyridine nitrogen, two azomethine nitrogen atoms and ketonic oxygen in case of H2La or sulphur atoms in case of H2Lb. The Coats–Redfern equation has been used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. Cyclic voltammograms of Co(II) and Ni(II) show quasi-reversible peaks. The redox properties and the nature of the electro-active species of the complexes have been characterized.  相似文献   

8.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

9.
Two new series of copper(II), nickel(II), cobalt(II), zinc(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) complexes with two bifunctional tridentate Schiff base, H4L1 and H2L2 ligands have been prepared. The Schiff base, H4L1 and H2L2, ligands were synthesized by the condensation of 4,6-diacetylresorcinol with o-aminophenol or o-phenylenediamine. The ligands are either di- or tetra-basic with two symmetrical sets of either OON or NNO tridentate chelating sites. The ligands and their metal complexes have been characterized by elemental analysis, 1H-n.m.r., FT-IR, mass, electronic, esr spectra and thermal gravimetric analysis and magnetic susceptibility. With the exception of CoII ion with H2L2 which afforded a trinuclear complex, a variety of binuclear complexes for the rest of the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The bonding sites are the azomethine and amino nitrogen atoms, and phenolic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.  相似文献   

10.
4,4′-Bis(chloroacetyl)diphenyl ether (HL) was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst by Friedel-Crafts reaction. Subsequently, its keto oxime (H2L) and glyoxime (H4L) derivatives were also prepared. Then, five new substituted 4,4′-oxy-bis(aminophenyl-glyoximes) (H4L1–5) were synthesized from 4,4′-oxy-bis(chlorophenylglyoxime) and the corresponding amines. The Ni(II), Cu(II), and Co(II) complexes of these ligands were prepared. The structures of these ligands and their complexes were identified by FT-IR, 1H NMR, and ICP-AES spectral data, elemental analyses, and magnetic measurements.  相似文献   

11.
New Mannich bases bis(thiosemicarbazide methyl) phosphinic acid H3L1 and bis(1-phenylsemicarbazide methyl) phosphinic acid H3L2 were synthesized from condensation of phosphinic acid and formaldehyde with thiosemicarbazide and 1-phenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(L n )Cl2], K3[FeII(L1)Cl2], K3[MnII(L2)Cl2], and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II), and Fe(II) complexes, square planar for Co(II), Ni(II), and Cu(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes. Complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M : L) as (1 : 1).  相似文献   

12.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

13.
N-heterocyclic carbene ligands with picolyl (L1H2Br2, L3H2Br2) and benzyl (L2H2Br2, L4H2Br2) linked biphenyl backbone were synthesized and characterized. Their palladium(II) complexes [PdL1]Br2 ( 1 ), [PdL2Br2] ( 2 ), [PdL3]Br2 ( 3 ), and [PdL4Br2] ( 4 ) were synthesized by direct method using Pd(OAc)2. All complexes ( 1 – 4 ) were characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and single-crystal X-ray diffraction. Molecular structures confirm the distorted square planar geometry around the Pd(II) center. All of them showed good catalytic activity in acylative Suzuki cross coupling of phenyl boronic acid with benzoyl chloride to afford benzophenone in good yields.  相似文献   

14.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

15.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

16.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   

17.
Six new Cu(II), Ni(II) and Co(II) macroacyclic Schiff base complexes [MII(H2L)](ClO4)2 (L = L1 and L2) (I–VI) were prepared by the reaction of two new N2O4 Schiff base ligands in equemolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde (A1) and/or 2-[2-(3-formylphenoxy)propoxy]benzaldehyde (A2) and ethanol amine and characterized with IR and 1H, 13C NMR spectroscopy. All complexes were characterized by microanalysis, IR and mass spectrometry, whereas complex I was also characterized by single crystal X-ray (CIF file CCDC no. 1020055). The X-ray structure of complex I revealed that all nitrogen and oxygen atoms of ligand (N2O4) have coordinated to the metal ion. However, Cu2+ ion is in six coordination environment that can bedescribed as a distorted octahedral geometry.  相似文献   

18.
New pentadentate binucleating ligands containing phenoxide as an endogenous bridging group, 2,6-diformyl-4-methylphenol bis(carbohydrazone) (L1H), and 2,6-diformyl-4-methylphenol bis(semicarbazone) (L2H), and their binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of general formula [M2LCl3] · nH2O with chloride as an exogenous bridge have been synthesized. The complexes were characterized on the basis of elemental analysis, conductivity measurements, thermal analysis, IR, Far-IR, NMR, UV–Vis, EPR, FAB-mass and magnetic data. The coordination mode (N4O, N2O3), as well as endogenous phenoxide bridge and an exogenous chloride bridge have been established on the basis of IR, Far-IR and 1H-NMR spectral data. Electronic spectral data of the complexes indicate square-pyramidal geometry. EPR spectra show line broadening, which is further supported by weak antiferromagnetic interaction from the room temperature magnetic moment data. All compounds show appreciable antimicrobial activity.  相似文献   

19.
In the present study, two new ligands, 4-chlorobenzal-azino-isonitrosoacetophenone (L1), 4-methylbenzal-azino-isonitrosoacetophenone (L2) and their metal complexes were synthesized using acetophenone as a starting material. The coloured complexes were prepared by the addition of chloride salts of Ni(II), Co(II), Cu(II) and Zr(IV) ions to a solution of ligands. In conclusion, the structures of the obtained ligands and their complexes were characterized by FT-IR, and 1H NMR spectra, AAS (atomic absorption spectrum) analysis, magnetic susceptibilities as well as elemental analysis.  相似文献   

20.
The metal templated Cd(II) cyclocondensation of 2,6-diacetylpiridine or 2,6-pyridinedicarbaldehyde and two different amines containing piperazine moieties have been investigated. The resulting ligands, L1 and L2 are 16- and L3 and L4 17-membered pentaaza macrocycles. The complexes have been characterized by a variety of methods including IR, 1H, 13C NMR, DEPT, COSY(H,H), HMQC(H,C), FAB spectrometry and conductivimetry measurements. The crystal structures of [CdL2Cl](CH3OH)ClO4 (2) and [CdL4(NO3)(H2O)]ClO4 (4) have been also determined, and it was shown that the geometry of the Cd(II) ion in the complexes is slightly distorted pentagonal pyramidal and pentagonal bipyramidal, respectively. The gas-phase structures of ligands, L2 and L4 and their Cd(II) complexes have also theoretically studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号