首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary From extraction experiments andg-activity measurements, the extraction constant corresponding to the 2Na+(aq)+SrL(nb)?2NaL+(nb)+Sr2+(aq) equilibrium taking place in the two-phase water-nitrobenzene system (L=benzo-15-crown-5; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as log Kex(2Na+,SrL)=1.0±0.1. Further, the stability constant of the benzo-15-crown-5-sodium complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log bnb(NaL+)=7.8±0.1.  相似文献   

2.
Abstract

7Lithium NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution. A competitive 7Li NMR technique was also employed to probe the complexation of Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ ions with the same crown ethers. In all cases, the stability of the resulting 1:1 complexes was found to decrease in the order 15-crown-5 > benzo-15-crown-5 > 12-crown-4. Ca2+ and Cd2+ ions formed the most stable complexes in the series.  相似文献   

3.
The binding of Na+, K+ and Mg2+ to benzo-15-crown-5 and aza-15-crown-5 directly-linked ferrocenes results in shifts of the ferrocene oxidation wave to more positive potentials. The magnitude of these anodic shifts is related to the charge/radius ratio of the cationic guest. The results of an X-ray diffraction study of the structure of a ferrocene benzo-15-crown-5 sodium complex are also reported.  相似文献   

4.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

5.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.Graphical Abstract Synthesis of Double-Armed Benzo-15-crown-5 and Their Complexation Thermodynamics with Alkali CationsYU LIU*, JIAN-RONG HAN, ZHONG-YU DUAN and HENG-YI ZHANG This revised version was published online in July 2005 with a corrected issue number.  相似文献   

6.
The transfer of Li+, Na+, K+ and Cs+ from water to nitrobenzene at their interface as facilitated by benzo-12-crown-4, benzo-15-crown-5, 4′-methylbenzo-15-crown-5 and benzo-18-crown-6 was studied by cyclic voltammetry. The mechanism of the transfer process was discussed and the stability constants of the complexes formed in nitrobenzene were determined.  相似文献   

7.
Six kinds of benzo-15-crown-5 (L) adducts having the stoichiometric formula M(Pic)2 · L · xH2O (M=Mn, Cu, x=2; M=Co, Ni, Zn, Cd, x=4; Pic means picrate anion) have been synthesized and characterized by EA, IR, UV and molar conductance. The X-ray crystal structural analysis of the benzo-15-crown-5 adduct with hydrated copper(II) picrate revealed that the benzo-15-crown-5 molecule virtually acts as a second-sphere ligand, which associates with the copper(II) ion by hydrogen bonding of the coordinating water molecule. By the comparison of the IR, UV spectra and molar conductance of the new adducts prepared, it can be deduced that the other adducts exhibit the similar coordination environment to that of the copper adduct.  相似文献   

8.
The complexation reaction of phenylaza-15-crown-5, and 4-nitrobenzo-15-crown-5, benzo-15-crown-5 and dibenzopyrdino-18-crwon-6, dibenzo-18-crown-6,dicyclohexyl-18-crown-6(cis and trans), and 18-crown-6 with Na+ ion in methanol have been studied by potentiometric method. The Na+ ion-selective electrode has been used both as indicator and reference electrode. The stoichiometry and stability constants of complexes of these crown ethers with sodium ion were evaluated by MINIQUAD program. The major trend of stability of resulting complexes of these macrocycle with Na+ ion varied in the order DCY18C6 > DB18C6 > 18C6 > DBPY18C6 > phenylaza-15C5 > benzo-15C5 > 4-nitrobenzo-15C5. The obtained results in particular stability constant of complexes of DBPY18C6, phenylaza-15C5 and 4-nitrobenzo-15C5 with sodium ion in comparison with other crowns ether are novel, and interesting.  相似文献   

9.
To quantitatively elucidate the effects of the benzo group on the extraction-selectively and -ability of benzo-15-crown-5 (B15C5)for alkali metal ions, the constants of the overall extraction (Kex), thedistribution for various diluents having low dielectric constants (KD,MLA), and the aqueousion-pair formation (KMLA) of B15C5-alkali metal (Li, Na, K) picrate 1:1:1 complexes (MLA) weredetermined at 25 °C. The partition constants of B15C5were also measured at 25 °C. The log KMLA values for Li+, Na+, and K+ are -0.32 ± 0.22, 2.66 ± 0.19, and 0.71 ± 0.47, respectively. In going from 15-crown-5 (15C5) to B15C5, the benzo group considerably decreasesthe KMLA value for the same alkali metal ion. The distributionbehavior of B15C5 and its 1:1:1 complexes with the alkali metal picrates closely obeys regularsolution theory, omitting chloroform. Molar volumes and solubility parameters of B15C5and the 1:1:1 complexes were determined. For every diluent, the Kex valuefor B15C5 increases in the order Li+ < K+ < Na+. KD,MLA makes anunfavorable contribution to the Na+ extraction-selectivity of B15C5 because of the smallest molar volume of the Na(B15C5)A complex. The Na+ extraction-selectivity of B15C5 is determined completely by much the highest KNa(B15C5)A value.The extraction-ability and -selectivity of B15C5 for the alkali metal picrates are compared with those of 15C5on the basis of the underlying equilibrium constants.  相似文献   

10.

Stability constants (KML) of 1 : 1 benzo-15-crown-5 (B15C5) complexes with alkali metal ions were conductometrically measured in water at 25°C. Transfer activity coefficients of B15C5 and 15-crown-5 (15C5) from water to polar nonaqueous solvents were determined at 25°C. By using these data and the literature values, transfer activity coefficients of the B15C5 and 15C5 complexes with alkali metal ions from water to the polar nonaqueous solvents were calculated to study the solute-solvent interaction of the crown ether complexes. The stability of the B15C5 complex is lower in water than in any other nonaqueous solvent. The KML value for B15C5 is always smaller than the corresponding K ML value for 15C5. The interaction of the B15C5 or the 15C5 complex with the solvents depends on the alkali metal ion in the crown cavity. All the B15C5 and 15C5 complexes undergo hydrophobic hydration, which is particularly stronger for the B15C5 complexes with Na+ and K+. The unexpectedly lowest stability of the B15C5- or the 15C5-alkali metal ion complex in water among all the solvents is caused by the hydrogen bonding between ether oxygen atoms of uncomplexed B15C5 or 15C5 and water.  相似文献   

11.
Lipophilic bis-substituted ester and ether derivatives of benzo-15-crown-5 have been synthesised. The correlation between the structure and potentiometric ion-selectivity has been studied in PVC membrane ion-selective electrodes. An ion-selective potassium sensitive electrode based on 4,5-bis (biphenyloxymethyl)benzo-15-crown-5 exhibited the best electrode properties. The detection limit was loga K = -5.4; logK K,Na ppot = -3.5. The effect of the lipophilicity of neutral carriers upon electrode performance has been also discussed.  相似文献   

12.
Enthalpies of dissolution of benzo-15-crown-5 ether (B15C5) in mixtures of acetonitrile with water and in solutions of NaI and NaBPh4 (I=0.05 mol dm–3) in these mixtures were measured at 298.15 K. From the obtained results and appropriate literature data, the thermodynamic functions of B15C5/Na+ complex formation in acetonitrile-water mixtures were determined. The enthalpies of transfer of the complex B15C5/Na+ from pure acetonitrile to the examined mixtures were calculated and are discussed.  相似文献   

13.
The extraction of micro amounts of cesium by nitrobenzene solutions of sodium, potassium and rubidium dicarbollylcobaltates (M+B;M+=Na+,K+,Rb+) has been investigated in the presence of 2,3-naphtho-15-crown-5 (N15C5, L). The equilibrium data were explained by assuming that ML+ and ML2+ complexes (M+=Na+,K+,Rb+, Cs+; L=N15C5) were present in the organic phase. The stability constants of the complex species ML+ and ML2+ have been determined in nitrobenzene saturated with water. It was found that the stability of the complex cation ML+ (where M+=Na+,K+,Rb+, Cs+; L=N15C5) in water-saturated nitrobenzene solutions increases along the series Cs+<Rb+<K+<Na+, whereas that of the species ML2+ in the same medium increases in the order Cs+<Rb+<Na+<K+.  相似文献   

14.
The interactions of DNA with phenoxazones, xanthones, and carbazoles containing the (benzo-18-crown-6)-4′-yl and (benzo-15-crown-5)-4′-yl radicals bonded to the chromophore via spacers of different lengths in the presence of Na+ and K+ ions were studied by spectrophotometry, circular dichroism, and dynamic birefringence. The thermodynamic parameters of the binding of the compounds with DNA and changes in the macromolecular parameters of the DNA molecule during complexation were determined. Based on the results of these studies, we suggested the models of bonding of these compounds to the double helix of DNA. It is shown that the mode of DNA binding with a phenoxazone derivative containing two (benzo-15-crown-5)-4′-yl radicals bonded via a fragment of glycine to chromophore depends on the type of the counterion in solution. In the presence of Na+, the chromophore is intercalated into the double helix of DNA; in the presence of K+, it is bound to DNA in the form of a dimer outside the double helix. The type of the counterion does not affect the mode of binding of other crown-containing compounds of actinocin with DNA. For compounds containing the (benzo-18-crown-6)-4′-yl radical, the mode of binding to DNA adepends only on the spacer length.  相似文献   

15.
Extraction of microamounts of cesium by nitrobenzene solutions of potassium dicarbollylcobaltate (K+B) and rubidium dicarbollylcobaltate (Rb+B) in the presence of benzo-15-crown-5 (B15C5, L) has been investigated. The equilibrium data have been explained assuming that the complexes ML+ and ML2+ (M+ = K+, Rb+, Cs+) are present in the organic phase. The stability constants of the species ML+ and ML2+ (M+ = K+, Rb+) in nitrobenzene saturated with water have been determined.  相似文献   

16.
Synthesis of new aminomethylphosphonic acids containing benzo-15-crown-5 ether, is described. These compounds were obtained from the 4′-formylbenzo-15-crown-5 by a sequence of reactions, which afforded 4′-(aminomethylphosphono)-benzo-15-crown-5 and its N-benzyl derivative in high yields.  相似文献   

17.
Equilibrium constants () for the ion-pair formation of a complex ion NaL+ with ReO4 in water were determined potentiometrically at 25 °C and the ionic strength (I) of 0 mol dm−3 using a Na+-selective electrode. Here, crown ethers, L, were 15-crown-5 ether (15C5), benzo-15C5, 18-crown-6 ether (18C6) and benzo-18C6. Also, NaReO4 was extracted by the L into 1,2-dichloroethane and then extraction constants (Kex/mol−2 dm6) for the species, NaLReO4, were determined at 25 °C by AAS. These Kex values were resolved into four component equilibrium constants containing KMLA calculated at given I values. Based on these data, extraction-abilities of the L against the perrhenate were discussed in comparison with those of sodium picrate-L systems reported previously.  相似文献   

18.
Summary From extraction experiments andg-activity measurements, the extraction constant corresponding to the equilibrium Pb2+(aq)+SrL(nb)?PbL(nb)+Sr2+(aq)taking place in the two-phase water-nitrobenzene system (L = benzo-15-crown-5; aq = aqueous phase, nb = nitrobenzene phase) was evaluated aslog Kex(Pb2+,SrL)=0.1±0.1. Further, the stability constant of the benzo-15-crown-5-lead complex in nitrobenzene saturated with water was calculated for a temperature of25 °C:log bnb(PbL)=13.2±0.1.  相似文献   

19.
Abstract

The 4-H, 4-methyl and 4-phenyl derivatives of benzo-α-pyrone of 12-crown-4 and 15-crown-5 were synthesised starting from 4-substituted-6,7-dihydroxy- and 7,8-dihydroxybenzo-α-pyrones which reacted with dichloropolyethylene glycols in DMF/water/alkali carbonate. The coumarin-macrocycles were identified by elemental analysis, IR, EI-GC-MS as well as 1H, 13C NMR spectroscopy. The full experimental and spectral data is reported along with ion binding data studied in acetonitrile using fluorescence spectroscopy. The binding of the fluorogenic coumarin-crowns with Li+, Na+ and K+ were recognized as specific alterations on their fluorescence spectra that strongly originated from the structures. The observed CEQFS depending on the bound cation radii and macrocycle size evidenced the rules of cationic recognition of macrocycles. Some 15-crown-5 derivatives exhibited interesting Li+ and Na+ binding selectivities.  相似文献   

20.
The coordinative properties of perfluoro-15-crown-5 with monocations were investigated using 19F NMR spectroscopy and ion-selective electrodes with perfluoro-15-crown-5 as the matrix of their sensor membranes and the fluorophilic tetrakis[3,5-bis(perfluorohexyl)phenyl]borate as ion exchanger site. The results show that perfluoro-15-crown-5 interacts weakly but significantly with Na+ and K+. Assuming 1:1 stoichiometry, the formal complexation constants were determined to be 5.5 and 1.7 M−1, respectively. This weak binding is consistent with the strong electron withdrawing nature of the many fluorine atoms in the perfluorocrown ether. While perfluorinated crown ethers have been known to form host-guest complexes with the anions O2 and F in the gas-phase, this is the first study that quantitatively confirms cation binding to a perfluorocrown ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号