首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The persistence of widely used chelating agents EDTA and DTPA in nature has been of concern and there is a need for ligands to replace them. In a search for environmentally friendly metal chelating ligands for industrial applications, complex formation equilibria of N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6) with Cd(II), Hg(II) and Pb(II) in aqueous 0.1 M NaNO3 solution were studied at 25°C by potentiometric titration. Complexation was modeled and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions, stable ML4? complexes dominated the complex formation. The stabilities of Cd(II), Hg(II) and Pb(II) chelates of BCA6 are remarkably lower than those of EDTA and DTPA. Environmental advantages of the use of BCA6 instead of EDTA and DTPA are better biodegradability and lower nitrogen content with a possibility to save chemicals and process steps in pulp bleaching.  相似文献   

2.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

3.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of N-tris[(1,2-dicarboxyethoxy)ethyl]amine (TCA6) with Ca(II), Mn(II), Cu(II) and Zn(II) ions in aqueous 0.1?M NaCl solution were studied at 25°C by potentiometric titration. A model for complexation and stability constants of the complexes were determined. With all of the metals, complex formation was dominated by ML4?. Comparison of TCA6 and six other chelating agents showed TCA6 to be suitable for applications where strong calcium binding is essential.  相似文献   

4.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

5.
Three new mononuclear complexes [Co(2-Acpy)2(H2O)2](NO3)2 (1), [Ni(2-Acpy)2(H2O)2](NO3)2 (2) and [Cd(2-Acpy)2(NO3)2] (3) (2-Acpy = 2-acetylpyridine) have been synthesized and characterized by elemental analysis, IR and UV–Vis spectroscopy. The structures of 1 and 3 were accomplished by single crystal X-ray diffraction. Crystallographic investigation of 1 reveals monomeric, dicationic units in which the cobalt(II) ion is six-coordinate. The coordination sphere is formed by two N, O bidentate acetylpyridine ligands and two water molecules. The crystal structure of 3 consists of monomeric units in which the cadmium is eight-coordinate. Both the organic ligand and nitrate groups are bidentate chelators. The supramolecular solid-state architecture is sustained by π–π interactions.  相似文献   

6.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

7.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

8.
An extraction-spectrophotometric method is described for the determination of traces of iron(II) with 2-[2-(3,5-dibromopyridyl)azo]-5-diethyl-aminobenzoic acid. The reagent forms a stable and blue 12 iron/reagent complex that can be extracted into chloroform. The apparent molar absorptivity of the iron(II) complex is 1.09 × 105 1 mol–1 cm–1 at 624 nm in chloroform. The reagent is relatively selective; interferences from cobalt, copper, nickel and vanadium can be removed by using dimethylglyoxime and EDTA. The method is applied to the determination of iron (II) in sea water and aluminium alloys with good precision and accuracy.  相似文献   

9.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

10.
The compounds ML2(NCS)2, (M(II)=Mn, Co), FeL2(NCS)2×2H2O, NiL3 NCS)2×3H2O (L=2,2'-bipyridine, 2-bipy) MX2(NCS)2×2H2O (M(II)=Mn, Fe; X=4,4'-bipyridine, 4-bipy) have been prepared and their IR spectra and molar conductivity studied. The thermal decomposition of the complexes was studied under non-isothermal conditions in air. During heating the hydrated complexes lose crystallization water molecules in one or two steps and then decompose via different intermediate compounds to the oxides Mn3O4, Fe2O3, CoO, NiO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
依据邻羟基二苯醚及芳香肼类化合物的抗菌特性, 以邻羟苯基为分子核心, 酰肼键为桥基, 设计合成了7种未见报道的N-(取代苯基)乙基-2-羟基苯甲酰肼类化合物. 以水杨酸甲酯为原料, 经肼解反应后与取代苯乙酮缩合, 再与硼氢化钠反应制得目标化合物, 化合物结构经IR, 1H NMR和元素分析等证实. 抗菌活性测试结果表明, 该类化合物对不同菌株的抑菌活性具有明显的选择性和特异性. 当质量浓度为1×10-4 g/mL时, 化合物3b和3e对大肠杆菌和白色念珠菌的抑菌率高达100%, 有极强的抑菌活性; 所有化合物对金黄色葡萄球菌的抑菌率均大于70%, 有一定的抑菌活性. 构效关系分析结果表明, 苯基中引入Cl或Br等卤原子能显著增强化合物的抑菌活性, 而引入-NO2及-CH3基团则会降低其抑菌活性.  相似文献   

12.
Potassium 1,3-bis(N-methyl piperazino)propan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) ions have been prepared and characterized as [CoL2(H2O)2], [NiL2(H2O)2]·2H2O and CuL·2H2O by FT-IR, 1H and 13C?NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

13.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

14.
A partial least squares (PLS-1) calibration model based on kinetic—spectrophotometric measurement, for the simultaneous determination of Cu(II), Ni(II) and Co(II) ions is described. The method was based on the difference in the rate of the reaction between Co(II), Ni(II) and Cu(II) ions with 1-(2-pyridylazo)2-naphthol in a pH 5.8 buffer solution and in micellar media at 25°C. The absorption kinetic profiles of the solutions were monitored by measuring the absorbance at 570 nm at 2 s intervals during the time range of 0–10 min after initiation of the reaction. The experimental calibration matrix for the partial least squares (PLS-1) model was designed with 30 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.1-2 μg mL−1 for each cation. The proposed method was successfully applied to the simultaneous determination of Cu(II), Ni(II) and Co(II) ions in water and in synthetic alloy samples.   相似文献   

15.
《Tetrahedron letters》2003,44(3):553-555
The ethyl α-bromomethyl-β-(diethoxyphosphoryl)acrylic acid ester 9 has been prepared by addition of bromine to allylphosphonate 7 then dehydrobromination with DBU in acetonitrile. Reaction of allylic bromide 9 with primary amines in a bimolecular SN2′-type mecanism in methanol at low temperature, gives rise to the 2-[alkylamino(diethoxyphosphoryl)methyl]acrylic acid ethyl esters 6.  相似文献   

16.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

17.
Potassium 1,3-dipyrrolidinopropan-2-O-xanthate (LK), and its complexes with Co(II), Ni(II) and Cu(I) have been prepared and characterized as [CoL2(H2O)2]?·?2H2O, [NiL2(H2O)2] and CuL?·?2H2O by FT-IR, 1H and 13C NMR spectroscopies, elemental analyses, magnetic susceptibility and TGA techniques.  相似文献   

18.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

19.
A cloud-point extraction (CPE) process using the nonionic surfactant Triton X-114 to simultaneous extraction and spectrophotometric determination of Zn(II), Co(II) and Ni(II) from aqueous solution using partial least squares (PLS) regression is investigated. The method is based on the color reaction of these cations with 1-(2-pyridylazo)2-naphthol and subsequent micelle-mediated extraction of products. The optimum extraction and reaction conditions such as pH, reagents concentration and effect of time have been studied. Linearity was obeyed in the range 2–150, 5–250 and 2–150 ng mL−1 of Zn(II), Co(II) and Ni(II) respectively. The relative standard error (RSE) for the simultaneous determination of 15 test samples of different concentrations of Zn(II), Co(II) and Ni(II) was 4.38%;, 1.18% and 2.42%, respectively. The total relative standard error (RSEt) for applying the PLS method to 15 synthetic samples in the linear ranges of these metals was 2.36%. The interference effect of some anions and cations was also tested. The method was applied to the simultaneous determination of Zn(II), Co(II) and Ni(II) in water and human urine samples.  相似文献   

20.
The nucleophilic addition of bis[2-(2-pyridyl)ethyl]phosphine sulfide and bis[2-(2-pyridyl)-ethyl]phosphine selenide to 2-formyl-1-organylimidazoles and benzimidazoles occurs efficiently without catalysis at room temperature to give functionalized heterocyclic compounds containing imidazole, benzimidazole, and pyridine rings and also chalcogenophosphoryl and hydroxyl groups. Dedicated to Professor A. Pozharskii on his 70th jubilee Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1669–1675, November, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号