首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel dinuclear nickel(II) complex Ni2(NO3)4(APTY)4 (1) (APTY?=?1,5-dimethyl-2-phenyl-4-{[(1E)-pyridine-4-ylmethylene]amino}-1,2-dihydro-3H-pyrazol-3-one), was synthesized by solvothermal reaction of Ni(NO3)2?·?6H2O with APTY in methanol at 353?K. The structure consists of centrosymmetric dimers resulting from octahedrally coordinated Ni atoms bridged by APTY ligands. Weak intermolecular interactions (C–H?···?N, C–H?···?O hydrogen bonding, C–H?···?π and π–π stacking interactions) are responsible for a supramolecular assembly of molecules in the lattice. Magnetic measurements over 1.8–300?K show weak antiferromagnetic coupling between Ni(II) ions with J?=?2.969?cm?1, g?=?2.280, θ?=??5.903.  相似文献   

2.
The novel heteronuclear compounds [Zn(hydet-en)2Pd(CN)4] (1) and [Cd(hydet-en)2Pd(CN)4] (2) {hydet-en: N-(2-hydroxyethyl-ethylenediamine)} have been synthesized and characterized by elemental analyses and IR spectra. The crystal structures of 1 and 2 have been determined by X-ray diffraction. Structural analysis shows that both compounds have shown a polymeric chain, in which the Zn(II)/Pd(II) and Cd(II)/Pd(II) centres are linked by two CN groups. Both zinc and cadmium atoms are six coordinate with two trans cyanide–nitrogen and four hydet-en N atoms in a distorted octahedron arrangement; the palladium atoms in 1 and 2 are four coordinate with four cyanide-C atoms in a square planar arrangement. The chains in both compounds are connected through weak interchain hydrogen bonds, N–H?···?O, N–H?···?N and O–H?···?N, thereby forming a three-dimensional network.  相似文献   

3.
Salen-type bisoxime 5,5′-dimethoxy-2,2′-[(ethylenedioxy)bis(nitrilomethylidyne)]diphenol (H2L) and its trinuclear Ni(II) cluster {[(NiL)(n-BuOH)]2(μ-OAc)2Ni}?·?n-BuOH have been synthesized and structurally characterized. The structure of H2L adopts an L-shape conformation where the two salicylaldoxime moieties are well separated. In the trinuclear Ni(II) cluster, two acetates coordinate to three Ni(II)'s through Ni–O–C–O–Ni bridges, four μ-phenoxos from two [NiL(n-BuOH)] units also coordinate to Ni(II), and two n-butanols coordinate to two terminal Ni(II)'s forming a distorted octahedral geometry. The Ni–O–C–O–Ni and μ-phenoxo bridges play important roles in assembling Ni(II) and the ligands. H2L forms a rectangle-like large cave structure through O–H?···?N, C–H?···?O, and C–H?···?π hydrogen-bond interactions, whereas its trinuclear Ni(II) cluster exhibits a 3-D supramolecular network structure through intermolecular O–H?···?O, C–H?···?O, and C–H?···?π hydrogen-bond interactions.  相似文献   

4.
A mixed-anion mercury(II) complex of 2,2′-bipyridine (bipy), [Hg(bipy)2(CH3COO)]2(SO4)?·?0.5NaCl has been synthesized and characterized by elemental analysis, IR-, 1H NMR- and 13C NMR spectroscopy and the structure of this compound determined by single-crystal X-ray diffraction. The thermal stability of this compound was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The complex is a monomer and there are two different Hg atoms with unsymmetrical six-coordinate geometry, formed by four nitrogen atoms of the bipy ligands and two oxygen atoms of the acetate anion. There are short intermolecular C–H?···?O interactions in the packing of this compound.  相似文献   

5.
Tetrakis­(chloro­methyl)­phospho­nium chloride monohydrate, C4H8Cl4P+·Cl?·H2O or P(CH2Cl)4+·Cl?·H2O, is the first crystal structure determination of a tetrakis­(halogeno­methyl)­phospho­nium compound to date. The only comparable structures known so far are of phospho­nium ions containing just one halogeno­methyl group. The solvent water mol­ecule interacts with the Cl? anion via hydrogen bonds, with O?Cl distances of 3.230 (2) and 3.309 (2) Å. The structure also contains several C—H?Cl? and C—H?O contacts, though with longer D?A distances [D?A 3.286 (3)–3.662 (2) Å] or bent D—H?A angles. For these reasons, the C—H?Cl? and C—H?O interactions should not be considered as strong hydrogen bonds.  相似文献   

6.
Two new zinc(II) and cadmium(II) complexes, [Zn(PDT)2(NCS)2] (1) and [Cd((PDT)2I1.6(H2O)0.4(OH)0.4] · 0.4H2O (2) (“PDT” is the abbreviation of 3-(2-pyridyl)-5, 6-diphenyl-1,2,4-triazine), have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, and studied by X-ray crystallography. Zinc(II) in 1 is six coordinate ZnN6. 2 is a co-crystal with cadmium(II) being 60% six-coordinated with a CdN4I2 environment and 40% seven-coordinated with a CdN4O2I environment. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular S ··· π, C–H ··· π, C–H ··· I, and π ··· π interactions.  相似文献   

7.
To explore the coordination abilities of nitronyl nitroxide ligands, two ligands substituted with quinoxaline ( L1 ) and 2‐phenyl‐1, 2, 3‐triazole ( L2 ) and their NiII and ZnII complexes: Ni( L1 )(hfac)2 ( 1 ), Ni( L2 )(hfac)2 ( 2 ), and Zn( L2 )(hfac)2 ( 3 ) (hfac = hexafluoroacetylacetonate), were synthesized and characterized. X‐ray single‐crystal diffraction analysis shows that compound 1 has a mononuclear structure, which is further linked into a three‐dimensional (3D) supramolecular network by C–H ··· F hydrogen‐bonding, C–H ··· π, and π ··· π stacking interactions. Complexes 2 and 3 have similar mononuclear structures, which are further linked into one‐dimensional (1D) supramolecular chains by various intermolecular weak interactions, such as C–H ··· F hydrogen‐bonding, and π ··· π stacking interactions. The results indicate that the steric bulk of L1 and L2 and the existence of hexafluoroacetylacetonate (hfac) play important roles in controlling the formation of the final frameworks of complexes 1 – 3 . Moreover, the luminescent properties of the ligands and their complexes were investigated in detail.  相似文献   

8.
The reaction of [1,3‐bis(2‐ethoxy)benzene]triazene, [ HL ], with Hg(SCN)2 and Hg(CH3COO)2, resulted in the formation of the complexes [Hg L (SCN)] ( 1 ) and [Hg L 2] · CH3OH ( 2 ). They were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. The structure of compound 1 consists of two independent complexes in which the HgII atoms are stacked along the crystallographic a axis to form infinite chains. Each HgII atom is chelated by one L ligand and one SCN ligand, whereas in compound 2 , the HgII atom is surrounded by two L ligands. In addition, 1D chains formed by metal–π interactions are connected to each other by C–H ··· π stacking interactions in the structure of 1 , which results in a 2D architecture. An interesting feature of compound 2 is the presence of C–H ··· π edge‐to‐face interactions.  相似文献   

9.
A mixed-ligand Zn(II) complex formulated as [Zn(aldtc)2(bipy)] (aldtc=diallyldithiocarbamate; bipy=2,2′-bipyridine) was synthesized and characterized by IR, 1H and 13C NMR spectral measurements and X-ray crystallography. The crystal structure of this complex indicates that Zn has a distorted octahedral geometry. The Zn—N distances are invariant (2.168(2) Å), while those of the Zn—S are slightly different (2.5408(9) and 2.5440(9) Å). The N—Zn—N, S—Zn—S and N—Zn—S bond angles are in the range 75.35(13)–99.75(7)°, 70.48(3)–161.02(5)° and 95.26(7)–160.32(7)°, respectively. The crystal packing of the complex shows different motifs of supramolecularity resulting from both hydrophilic ((π)C—H···S) and hydrophobic ((allyl)C—H···C(π)) intermolecular interactions. These interactions result in a chain arrangement of molecules along crystallographic c axis and the chains are further connected via π···π stacking along with ((π)C—H···S along b axis leading to an overall crystal packing that can be regarded as layers of complexes along bc plane, which are held together through nonconventional hydrogen bonding and π···π stacking.  相似文献   

10.
An unexpected dinuclear Cu(II) complex, [Cu2(L2)2] (H2L2?=?3-methoxysalicylaldehyde O-(2-hydroxyethyl)oxime), has been synthesized via complexation of Cu(II) acetate monohydrate with H4L1. Catalysis by Cu(II) results in unexpected cleavage of two N–O bonds in H4L1, giving a dialkoxo-bridged dinuclear Cu(II) complex possessing a Cu–O–Cu–O four-membered ring core instead of the usual bis(salen)-type tetraoxime Cu3–N4O4 complex. Every complex links six other molecules into an infinite-layered supramolecular structure via 12 intermolecular C–H?···?O hydrogen bonds. Furthermore, Cu(II) complex exhibits purple emission with maximum emission wavelength λmax?=?417?nm when excited with 312?nm.  相似文献   

11.
《中国化学会会志》2018,65(7):893-899
A novel dinuclear Zn(II) complex with the chemical formula [Zn2(L)(OCH3)] has been synthesized by a bis(salamo)‐type tetraoxime ligand based on 3‐bromo‐5‐chlorosalicylicaldehyde, and characterized by elemental analyses, IR, UV–vis, and fluorescent spectra, and single‐crystal X‐ray diffraction analysis. All the Zn(II) atoms are pentacoordinated by N2O2 donor atoms from the (L)3− unit and one oxygen atom from one μ2‐methoxyl group. The Zn(II) (Zn1 and Zn4) atoms have distorted square pyramidal geometries (τ1 = 0.458, τ4 = 0.388), whereas the Zn2 and Zn3 atoms adopt trigonal bipyramidal (τ2 = 0.675, τ3 = 0.550) geometries. The Zn(II) complex is self‐assembled by intermolecular C H···O interactions to form an infinite three‐dimensional supramolecular structure. Interestingly, the intermolecular C H···π interactions in the Zn(II) complex is involved not in the formation of three‐dimensional structures but rather in the formation of the 0D dimer structure. Meanwhile, the optical properties of the Zn(II) complex were also measured and are discussed.  相似文献   

12.
Zinc(II) complexes of 4-aminoantipyrine (AAP), [Zn(AAP)2X2] (X = Cl, I) and [Zn(AAP)(CN)2] · 2H2O were prepared and characterized by elemental analysis, IR and NMR (1H & 13C) spectroscopy. The crystal structure of [Zn(AAP)2Cl2] (1) was determined by X-ray crystallography. The structural analysis of 1 shows that the complex exists as a monomeric nonionic molecule with zinc atom bound to two AAP ligands and two chloride ions adopting a distorted tetrahedral geometry. In [Zn(AAP)2(CN)2] · 2H2O, the appearance of a band at 2162 cm–1 in IR and resonances around 142 ppm in the 13C NMR spectra indicated the binding of cyanide to zinc(II).  相似文献   

13.
On the Crystal Structures of the Transition‐Metal(II) Dodecahydro‐closo‐Dodecaborate Hydrates Cu(H2O)5.5[B12H12]·2.5 H2O and Zn(H2O)6[B12H12]·6 H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic copper(II) carbonate or zinc carbonate, blue lath‐shaped single crystals of the octahydrate Cu[B12H12]·8 H2O (≡ Cu(H2O)5.5[B12H12]·2.5 H2O) and colourless face‐rich single crystals of the dodecahydrate Zn[B12H12]·12 H2O (≡ Zn(H2O)6[B12H12]·6 H2O) could be isolated after isothermic evaporation. Copper(II) dodecahydro‐closo‐dodecaborate octahydrate crystallizes at room temperature in the monoclinic system with the non‐centrosymmetric space group Pm (Cu(H2O)5.5[B12H12]·2.5 H2O: a = 768.23(5), b = 1434.48(9), c = 777.31(5) pm, β = 90.894(6)°; Z = 2), whereas zinc dodecahydro‐closo‐dodecaborate dodecahydrate crystallizes cubic in the likewise non‐centrosymmetric space group F23 (Zn(H2O)6[B12H12]·6 H2O: a = 1637.43(9) pm; Z = 8). The crystal structure of Cu(H2O)5.5[B12H12]·2.5 H2O can be described as a monoclinic distortion variant of the CsCl‐type arrangement. As characteristic feature the formation of isolated [Cu2(H2O)11]4+ units as a condensate of two corner‐linked Jahn‐Teller distorted [Cu(H2O)6]2+ octahedra via an oxygen atom of crystal water can be considered. Since “zeolitic” water of hydratation is also present, obviously both classical H–Oδ?···H–O and non‐classical B–Hδ?···H–O hydrogen bonds play a significant role for the stabilization of the structure. A direct coordinative influence of the quasi‐icosahedral [B12H12]2? anions on the Cu2+ cations has not been determined. The zinc compound Zn(H2O)6[B12H12]·6 H2O crystallizes in a NaTl‐type related structure. Two crystallographically different [Zn(H2O)6]2+ octahedra are present, which only differ in their relative orientation within the packing of the [B12H12]2? anions. The stabilization of the crystal structure takes place mainly via H–Oδ?···H–O hydrogen bonds, since again the hydrogen atoms of the [B12H12]2? anions have no direct coordinative influence on the Zn2+ cations.  相似文献   

14.
Two ternary copper(II) complexes [Cu(L1)(py)] (1) and [Cu(L2)(Himdz]?·?CH3OH (2) with substituted aroylhydrazones, 5-bromo-salicylaldehyde-3,5-dimethoxy-benzoylhydrazone (H2L1) and 5-bromo-salicylaldehyde-p-methyl-benzoylhydrazone (H2L2), pyridine (py) and imidazole (Himdz), have been synthesized. Their crystal structures and spectroscopic properties have been studied. In each complex, the metal is in a square-planar N2O2 coordination formed by the phenolate-O, the imine-N and the deprotonated amide-O atoms of L2?, and the sp2?N atom of the neutral heterocycle. In the solid state, 1 exists as a centrosymmetric dimer due to very weak apical coordination of the metal bound phenolate-O. Complex 2 has no such apical coordination and exists as a monomer. Self-assembly via C–H?···?O, N–H?···?O and O–H?···?N interaction leads to a one-dimensional chain arrangement; other non-covalent interactions such as C–H?···?π and π?···?π are not involved.  相似文献   

15.
Two trinuclear CoII and ZnII complexes, [(CoL)2(OAc)2Co] and [(ZnL)2(OAc)2Zn], with an asymmetric Salen‐type bisoxime ligand [H2L = 4‐(N,N‐diethylamine)‐2,2′‐[ethylenediyldioxybis(nitrilomethylidyne)]diphenol] were synthesized and characterized by elemental analyses, IR, UV/Vis, and fluorescent spectroscopy. The crystal structures of the CoII and ZnII complexes were determined by single‐crystal X‐ray diffraction methods. The CoII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in a trigonal bipyramid arrangement. With the help of intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions, a self‐assembled continual zigzag chain‐like supramolecular structure is formed. The ZnII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in an almost regular trigonal bipyramid arrangement. A self‐assembled continual 1D supramolecular chain‐like structure is formed by intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions. Additionally, the photophysical properties of the CoII and ZnII complexes were discussed.  相似文献   

16.
Three multinuclear complexes, [Co(L)(OAc)Co(CH3CH2OH)2]·H2O, [Zn(L)(OAc)Zn(CH3OH)], and [{Cd(L)(OAc)Cd(CH3OH)}2], containing a single-armed salamo-type bisoxime H3L have been synthesized and characterized structurally. The Co(II) complex forms a dimeric unit by intermolecular hydrogen bond interactions of neighboring dimeric molecules. The Zn(II) complex also forms a dimeric unit by intermolecular hydrogen bond interactions. Interesting features of the crystal structure include O?O short contacts. Meanwhile, self-assembling infinite 1-D, 2-D, and 3-D supramolecular structures are formed by intermolecular hydrogen bond and C–H?π interactions. The Cd(II) complex forms an infinite 2-D supramolecular structure by intermolecular hydrogen bond interactions. The photophysical properties of the Co(II), Zn(II), and Cd(II) complexes have also been discussed.  相似文献   

17.
Using 4-methylbenzenethiolates of Zn or Cd as precursors and 4,4′-bipyridine (4,4′-bpy) as bridges, we have synthesized three new Zn(II)/Cd(II) coordination polymers, {[Cd(4,4′-bpy)2(NCS)2] · 2(SC6H4CH3-4)2} n (1), {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · DMF} n (2) and {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · H2O · 0.5CH3OH} n (3). Compound 1 is a 2-D sheet-like square polymer in which four 4,4′-bpy ligands and two isothiocyanate ligands complete the octahedral Cd(II) coordination sphere. Compounds 2 and 3 have similar coordination around Zn(II), but have different polymer structures. In 2, Zn(II) centers are linked via a bidentate 4,4′-bipyridine to form 1-D twisted arched chains, which is a new structural type for Zn(II). Compound 3 has 1-D zigzag chains. The 2-D sheets in 1 and 1-D chains in 2 and 3 are assembled via intermolecular C–H ··· π and C–H ··· S interactions into 3-D supramolecular networks. C–H ··· S interactions are a vital factor in constructing the sulfur-containing coordination polymers. Different coordination modes and packing schemes in 13 show that the guest molecule has a critical influence on formation of polymers.  相似文献   

18.
The title ligand, [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazene, H L ( 1 ), was prepared. In a reaction with Hg(NO3)2 it forms the complex [Hg(C26H22Cl2N6O2)], [Hg L 2] ( 2 ). Both compounds were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. In the structure of compound 1 , two independent fragments are present in the unit cell. They exhibit trans arrangement about the –N=N– double bond. The dihedral angles between two benzene rings in both fragments are 4.36 and 18.79 Å, respectively. Non‐classic C–H ··· N hydrogen bonding and C–H ··· π interactions form a layer structure along the crystallographic ab plane [110]. In compound 2 , the HgII atom is hexacoordinated by two tridentate [1‐(2‐methoxyphenyl)‐3‐(4‐chlorophenyl)]triazenide ligands through a N2O2 set. In addition, in the structure of 2 , monomeric complexes are connected to each other by C–H ··· π stacking interactions, resulting in a 2D architecture. These C–H ··· π edge‐to‐face interactions are present with H ··· π distances of 3.156 and 3.027 Å. The results of studies of the stoichiometry and formation of complex 2 in methanol solution were found to support its solid state stoichiometry.  相似文献   

19.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

20.
In the title compound, [Zn(CH3COO)2(C4H8N2S)2]·H2O, the Zn atom is tetrahedrally coordinated in the ZnO2S2 form. N—H?O and O—H?O intramolecular and intermolecular hydrogen bonds are formed by the four N atoms and the water mol­ecule. N—H?O intermolecular hydrogen bonds and C—H?S and C—H?O intermolecular interactions interconnect columns formed by the mol­ecules into layers. Adjacent layers are then linked by other N—H?O and O—H?O intermolecular hydrogen bonds to form a three‐dimensional framework throughout the structure. The orientations of the acetate planes are such that the Zn atom lies within them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号