首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
By combination of Mn(II) and Hg(II) salts with a flexible building unit 1,1′-(1, 5-pentanediyl)bis-1H-benzimidazole (pbbm), two 1-D chain metal-organic polymers [Mn(SCN)2(pbbm)2] n (1) and {[HgCl2(pbbm)] · DMF} n (2) have been prepared. The polymeric 1-D chains in 1 consist of parallel ribbons of rings, whereas 2 possesses a 1-D zig-zag chain framework based on tetrahedral mercury atoms bridged by pbbm molecules and terminally coordinated by two chlorides. The significant differences of these metal-organic frameworks indicate that the flexible pbbm ligand adjusts its conformation to meet the requirement of the coordination preference of the metal center. The photoluminescent properties of these new materials have been studied in the solid state at room temperature.  相似文献   

2.
Mercury(II) complexes of pyrrolidinedithiocarbamate (PDTC) having the general formula [Hg(PDTC)X] (X = Cl?, SCN?, and CN?) and [Hg(PDTC)2] have been prepared and characterized by elemental analysis, IR, and NMR. The crystal structure of [Hg(PDTC)2] has also been determined by X-ray crystallography, showing that the complex is a centrosymmetric dimer, [Hg2(PDTC)4] (bis[µ2-(pyrrolidinedithiocarbamato-S,S′)(pyrrolidinedithiocarbamato-S,S′)mercury(II)]) (1). The solid-state structure of 1 contains two crystallographically equivalent Hg(II) centers in a distorted tetrahedron.  相似文献   

3.
By reaction of two ligands, Na(o-OOCC6H4COFc) (Fc?=?(η5–C5H5)Fe(η5–C5H4)) and 1,1′–(1,5–pentamethylene)bis-1H-benzimidazole (pbbm), with Zn(OAc)2?·?2H2O in methanol solution, we have synthesized a zinc(II) coordination polymer [Zn(o-OOCC6H4COFc)2(pbbm)] n . The polymer was characterized by X-ray single crystal diffraction, IR spectroscopy, and elemental analysis. Each Zn atom was connected by two pbbm ligands, leading to an infinite one-dimensional chain. Two monodentate o-FcCOC6H4COO? anions completed the coordination sphere of the central Zn(II) ion. The polymer's electrochemical properties were investigated in DMF solution.  相似文献   

4.
Three new CoII coordination polymers, namely [Co(DNBA)2(pbdmbm)] (1), [Co2(H2O)2(DNBA)2(ebdmbm)2] (2) and [Co2(DNBA)2(pbbm)2] (3) have been obtained by hydrothermal reactions of CoII with flexible bis(benzimidazole) ligands [1,1′-(1,3-propanediyl)bis(5,6-dimethylbenzimidazole) (pbdmbm), 1,1′-(1,2-ethanediyl)bis(5,6-dimethylbenzimidazole) (ebdmbm), 1,1′-(1,3-propanediyl)bis(benzimidazole) (pbbm)] plus 3,5-dinitrobenzoic acid (HDNBA). The complexes have been characterized by single crystal X-ray diffraction, elemental analyses, IR and TG. Complexes 1 and 3 exhibit one-dimensional chains composed of CoII centers bridged by flexible bis(benzimidazole) ligands. Complex 2 is a three-dimensional NaCl-type supramolecular framework constructed from binuclear units, which are formed by two CoII centers and two ebdmbm ligands. The spacer length and substituents on the bis(benzimidazole) ligands are crucial for the construction of these structures. The photoluminescence properties of the complexes and the cyclic voltammetry behavior of complex 1 are described.  相似文献   

5.
Six new coordination complexes, [Cd(η 2-OOCCH=(CH3)CFc)2(bix)]2·(CH3OH)0.5 (1), [Zn(η 2-OOCCH=(CH3)CFc)(η 1-OOCCH=(CH3)CFc)(bix)]2·(H2O)0.5 (2), [Zn(η 2-OOCCH=(CH3)CFc)2(pbbm)]2·(CH3OH)2 (3), {[Mn(η 1-OOCCH=(CH3)CFc)2(bbbm)(H2O)2]·(CH3OH)3}n (4), {[Cd(η 1-OOCCH=(CH3)CFc)2(bbbm)]·(CH3OH)2}n (5), and [Cd(η 2-OOCCH=(CH3)CFc)2(pmbbm)]n (6) {Fc?=?(η 5-C5H4)Fe(η 5-C5H4), bix?=?1,4[bis(imidazol-1-ylmethyl)benzene], pbbm?=?1,1′-[(1,4-propanediyl)bis-1H-benzimidazole], bbbm?=?1,1′-[(1,4-butanediyl)bis-1H-benzimidazole)], pmbbm?=?1,1′-[(1,4-pentanediyl)bis-1H-benzimidazole]}, were prepared and characterized. X-ray crystallographic analysis reveals that 1–3 are dimers bridged by bix and pbbm. Complexes 4–6 are one-dimensional (1-D) structures bridged by bbbm and pmbbm, respectively. Various ππ interactions were discovered in 1–6 that make significant contributions to molecular self-assembly. Solution differential pulse voltammetry of 1–6 indicates that the half-wave potentials of the ferrocenyl moieties in these complexes shift to positive potential compared with that of 3-ferrocenyl-2-crotonic acid.  相似文献   

6.
Two new discrete Btz-bridged pentanuclear metal complexes, [HDMF][NaHg4(Btz)6I4] (1) and [Zn5(Btz)6(L)3(Ac)]?·?0.5MeOH?·?0.5H2O (2) (Btz?=?deprotonated benzotriazole, L?=?p-aminobenzoate, HDMF?=?protonated DMF, and Ac?=?acetate), were synthesized using three-layered diffusion and natural evaporation methods, respectively. In 1, the pentanuclear anion [NaHg4(Btz)6I4]? is composed of a tetrahedral arrangement of four four-coordinate Hg(II) ions centered on the six-coordinate Na(I), and thereby forming a rare Btz-bridged hetero-metal complex. Compound 2 is a neutral pentanuclear homo-metal complex, consisting of a tetrahedral arrangement of four five-coordinate Zn(II) ions centered on the fifth six-coordinate Zn(II). The thermal stabilities and solid-state photoluminescence of the two complexes have been investigated.  相似文献   

7.
Complexes based on different halogen-substituted nitronyl nitroxide radicals and Cu(II), Cu3(hfac)6(NIT-Ph-F)2 (1) and Cu3(hfac)6(NIT-Ph-Cl)2 (2) (hfac = hexafluoroacetylacetonate; NIT-Ph-F = 2-(4′-fluorophenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; NIT-Ph-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), were synthesized and characterized structurally and magnetically. X-ray crystal structure analyses show that 1 and 2 have similar centrosymmetric five-spin structures consisting of three Cu(II) ions bridged by two nitroxide ligands. The Cu(II) is coordinated by six oxygens to form an octahedron, while the five coordination of the terminal Cu(II) ion is square pyramidal. Magnetic measurements reveal strong antiferromagnetic interactions between Cu(II) ions and radicals in 1 (J = ?38.9 cm?1) and weak antiferromagnetic interactions between Cu(II) ions and radicals in 2 (J = ?1.23 cm?1), which may be explained by the bond length of the Cu–Orad (2.468(2) Å) in 1, which is shorter than that (2.514(2) Å) in 2, and the dihedral angle (73.17(1)°) of the plane O7–O8–Cu(2)–O7A–O8A with the moiety O5–N1–C11–N2–O6 in 1 is smaller than (77.82(1)°) in 2.  相似文献   

8.
The angular polytopic dipyridyl ligand 2,6-bis(quinoline-2-carboxamido)pyridine (H2L) was prepared. Assemblies of H2L with ZnAc2 and HgAc2 resulted in two new dinuclear complexes [Zn2(L)(Ac)2]?·?1.5H2O?·?0.5CH3OH (1) and [Hg2(L)(Ac)2]?·?5H2O?·?CH3OH (2) where the doubly deprotonated L2? bi-chelate as μ-kN,N′?:?kN″,N″′, bridging the two metal centers (Ac?=?acetate). In 1, the two Zn(II) ions are also doubly bridged by two Ac ions in a μ-kO?:?kO′ coordination, and thus each metal center adopts a distorted tetrahedral geometry. In 2, each Ac ion is only terminal to Hg(II), in a rare distorted triangular or T-shaped coordination geometry. Free H2L, 1, and 2 emit interesting bluish-green fluorescence with strong intensities. Thermogravimetric analysis of 1 shows that the dinuclear structure of 1 is stable to 382°C.  相似文献   

9.
Two new linear trinuclear complexes, [Co(NiL1)2(SCN)2] (1) and [Co(NiL2)2(H2O)2](ClO4)2?·?2C2H5OH (2), have been prepared by using Co(ClO4)2?·?6H2O and two macrocyclic complex ligands NiL1 and NiL2. L1 and L2 are the doubly deprotonated forms of dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazabicyclo[12.4.015,16]13,18-dicarboxylate and dimethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. X-ray single crystal analyses reveal the coordination geometries around Ni(II) in both 1 and 2 are identical and slightly distorted square planar with N4 donors; all Ni–N bonds in the two complexes are very short. The Co(II) ions are at the centers of the trinuclear complexes and have distorted octahedral coordination geometries of O4N2 donors in 1 and an O6 in 2. π?···?π interactions involving aromatic and non-aromatic π-systems join the trinuclear entities to form 2-D layers in the crystals of 1 and 2.  相似文献   

10.
The combination of framework-builders 1,1′-(1,3-propanediyl)bis-1H-benzimidazole (pbbm), Cd(II) ion and framework-regulator ClO4 or SO42− provides two new coordination polymers [Cd(pbbm)2(ClO4)2]n(1) and {[Cd(pbbm)SO4(H2O)2]·CH3OH}n(2). Both of them display 1-D chain framework, but their detailed structures are clearly different from each other. 1 displays a 1-D ribbon of rings framework, 2 features an interesting infinite 1-D looped chain structure composed of two kinds of rings, the smaller 8-membered ring and the larger 20-membered ring. The antimicrobial activities of the two polymers were tested by the agar diffusion method and the results indicated that they exhibited antimicrobial activities against bacterial strands. The measurement of the non-isothermal kinetics of the thermal decomposition of 2 reveals that there are at least three steps that occur in its decomposition process.  相似文献   

11.
Two metal–organic frameworks, [Co2(L)(H2O)2(4,4′-bipy)]·3CH3CN (1) and [Mn2(L)(1,10-phen)(H2O)]·H2O (2) (H4L = 5-[bis(4-carboxybenzyl)-amino]isophthalic acid; 4,4′-bipy = 4,4′-bipyridine, 1,10-phen = 1,10-phenanthroline), with two different N-donor ligands have been synthesized. The structures of both MOFs were determined using single-crystal X-ray diffraction technique. MOF 1 shows 3D uncommon (4,6,6)-c net with (4.53.62)2(57.66.82)(42.54.66.72.8) topology while in the case of 2, only L4? ligands link Mn(II) ions into a 2D layer structure with chelating 1,10-phen ligand. The results demonstrate that variation in the N-donor ligands plays a pivotal role in deciding the framework of the two MOFs. Both MOFs have been exploited as photocatalyst materials for the degradation of MV. The photocatalysis results indicate that the two MOFs are stable and are prospective candidates for degradation of methyl violet under UV light irradiation. Additionally, 2 displayed superior photocatalytic activity in comparison to 1. The probable photocatalytic activity mechanism for both 1 and 2 against MV has been proposed using density of states (DOS) calculations.  相似文献   

12.
A new oxamato-bridged NiIICuIINiII species, [Ni(iprtacn)]2[Cu(pba)(H2O)0.5](BPh4)2 (1), (iprtacn?=?1,4,7-triisopropyl-1,4,7-triazacyclononane; pba?=?1,3-propylenebis(oxamato)) has been synthesized and structurally as well as magnetically characterized. Complex 1 has a discrete trinuclear NiIICuIINiII structure: Two nickel(II) ions are bridged by [Cu(pba)]2? with the macrocyclic ligand iprtacn a terminal ligand of nickel(II). Fitting the magnetic data of 1 led to g Cu?=?2.16, g Ni?=?2.18, J?=??112.5?cm?1, D?=?±7.78?cm?1. The irregular spin state structure and interaction of complex 1with DNA are described here.  相似文献   

13.
Abstract

The alkoxo-bridged binuclear complex of MnIII, [Mn2(salpa)2(C2H5—COO)2] (H2salpa = 3-salicylidene-amino-1-propanol), has been prepared and its crystal structure has been determined by X-ray diffraction. The structure of the title complex consists of discrete binuclear manganese units in which the MnIII atoms are bridged by two alkoxo ligands via oxygen atoms and supported by two carboxylato bridging ligands in the syn - syn fashion. The complex lies about a crystallographic inversion center. Each MnIII atom is located in an elongated octahedral environment with one imino N, one phenolic O and two alkoxo O atoms coordinated in the equatorial plane and two O atoms from carboxylato groups at the apical positions. The remarkably longer coordination bond distances in the axial direction are attributed to Jahn-Teller distortion at the d 4 manganese center. The distance between the manganese atoms is 2.8662(9) Å. The asymmetrical and symmetric stretching vibrations for carboxylato groups found at 1550 and 1440 cm?1, respectively, with a separation of less than 200 cm?1 confirmed the bidentate mode of the carboxylato groups.  相似文献   

14.
[Zn3(tda)2(bipy)2(H2O)2?·?4H2O] n (1) and [Co2(Htda)2(H2O)6·5H2O] (2) have been synthesized and characterized structurally by X-ray diffraction, where H3tda?=?1H-1,2,3-triazole-4, 5-dicarboxylic acid and 2,2′-bipy?=?2,2′-bipyridine. Their solid-state structures have been characterized by elemental analysis and IR spectroscopy. The molecular unit of 1 consists of two crystallographically unique Zn(II) ions assuming different coordination geometries, the tda3? exhibits a hexadentate binding mode chelating three Zn(II) ions; neighboring Zn–Zn distances through tda3? bridges are 5.910(6), 5.888(5), and 6.279(3)?Å, respectively. In 2, two neighboring Co(II) ions are bridged by two Htda2? ligands, forming a binuclear structure, with Co–Co distance of 4.091?Å and is further linked to generate a 3-D structure via hydrogen bonds. Fluorescent of 1 was investigated.  相似文献   

15.
Four transition metal complexes, [Mn(Hbimtz)2(H2O)2(NCS)2] (1), [Co(Hbimtz)2(H2O)2(NCS)2] (2), [Pb(Hbimtz)Br2] n (3), and {[Ag2(Hbimtz)3]SO4?·?4H2O} n (4) (Hbimtz?=?1-[(1H-benzimidazol-2-yl)-methyl]-1,2,3,4-tetrazole), were synthesized and characterized by single-crystal X-ray diffraction. The Mn(II) of 1 and Co(II) of 2 are six-coordinate with two nitrogen atoms from Hbimtz, two nitrogen atoms from thiocyanate and two water molecules. The geometry of Pb(II) in 3 is a distorted octahedron with two nitrogen atoms of two Hbimtz's and four Br? ions, including the weak bond between the Pb1 and N6 of Hbimtz. Complex 3 is assembled into a 1-D [PbBr2] n inorganic chain by μ 2-Br? and into a 2-D layer by weak interactions. The Ag(II) of 4 has two geometries, linear and tetrahedral. Hbimtz bridges the two kinds of Ag(II) into a 1-D helical chain. Fluorescence of 3 and 4 were also investigated.  相似文献   

16.
The synthesis and structure of two Cu(II) complexes, {[Cu2(L1)2]?·?DMF} n (1) and [CuL2(phen)] (2), are described. The dinegative hydrazones are obtained by deprotonation of both phenolic and amide moieties of N′-(5-bromo-2-hydroxybenzylidene)-3,5-dimethoxybenzohydrazide (H2L1) and N′-(2-hydroxybenzylidene)pyrazine-2-carbohydrazide (H2L2). In each complex the planar ligand binds the metal ion via phenolate-O, imine-N, and amide-O. Complex 1 is a polymer in which phenoxo-bridged binuclear Cu(II) units are further joined by equatorial–apical amide-O bridges. The Cu···Cu separations are 3.0306 and 3.8217?Å for the phenolate-O bridged pair and the amide-O bridged pair, respectively. Complex 2 is a monomer where chelating phen displays axial–equatorial bonding, with square-pyramidal Cu(II).  相似文献   

17.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

18.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

19.
Six 3-D lanthanide(III)-metal-organic frameworks (MOFs) through multidentate 3,5-bis(4′-carboxy-phenyl)-1,2,4-triazole (H2BCPT); acetic acid (HOAc); and corresponding trivalent rare earth chloride, {[Ln(BCPT)(OAc)(H2O)]·(H2O)}n (Ln = Nd3+ (1); Sm3+ (2), Gd3+ (3), Tb3+ (4), Ho3+ (5), Yb3+ (6)), have been synthesized. MOFs 1–6 were characterized via FT-IR spectroscopy, elemental analysis, X-ray single-crystal diffraction, thermal analysis, and fluorescence. MOFs 1–6 are isomorphous, which can be described as a 3-D construction containing a dinuclear cluster [Tb2(CO2)2(O)2]. The 3-D structure with (4,4) topologies have been extended through BCPT2? using μ4-kO;kO;kO;kO coordination modes. Solid-state luminescence of 1–4 and 6 shows the characteristic bands of Nd3+, Sm3+, Tb3+, and Yb3+ from visible to near-infrared spectral regions.  相似文献   

20.
A series of binuclear Schiff-base complexes of zinc(II) and mercury(II) containing bidentate ligands (HL) [HL?=?salicylidene-2-methyl-1-aminobenzene (HL1), salicylidene-2-aminopyridine (HL2), and salicylidene-3-nitro-1-aminobenzene (HL3)] with “N” and “O” donors have been synthesized by simple metathetic reactions of anhydrous metal chlorides with sodium salts of Schiff bases (in tetrahydrofuran (THF)/MeOH) in equimolar ratio to produce [(µ-Cl)2M2(L)2?·?xTHF] [where M?=?Zn(II) and Hg(II); L?=?HL1, HL2, and HL3; x?=?0 for (1), (4), (6) and x?=?2 for (2), (3), (5)]. The main emphasis on the complexes [(µ-Cl)2M2(L)2?·?2THF] (2), (3), and (5) is given due to their five-coordinate environment around metal ions. The complexes have been characterized by elemental analyses (M, Cl, C, H, N), melting point, and spectral (FT-IR, 1H-NMR, and 13C-NMR) studies. The structural composition of the complexes has been determined by FAB-MS spectral studies. FAB-MS showed the isotopic molecular ion peak [M+] and fragments supporting the formulation. Powder X-ray diffraction study of 6 is also reported showing the crystallite size (404.5?Å) of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号