首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The reaction of 2,6-bis(benzoxazolyl)-4-tert-butylphenol (HL) with [nBuxSnCl4?x] (x?=?0, 1) in 1:1 stoichiometry yielded the tin coordination complexes [(HL)SnnBuxCl4?x] [x?=?0 (1); x?=?1 (2)]. Deprotonation of HL was performed using reagents having groups with high basicity such as nBuLi or [Sn{N(SiMe3)2}2]. These basic reagents prompted the coordination of the ligand in its anionic form, yielding the complexes [(thf)2Li(L)SnCl4] (3) and [(L)Sn{N(SiMe3)2}] (4), respectively. The molecular structure of HL displayed an intramolecular hydrogen bond OH—N and a planar arrangement of the bis(benzoxazolyl)phenolic system. In the molecular structures of both complexes containing HL an intramolecular hydrogen bond of NH—O type was also present. The coordination of the ligand in either neutral or anionic form is described by a κON chelate mode toward Sn. All complexes displayed bis(benzoxazolyl)phenolic moieties close to planar; the least planar system was observed in 4 that was also studied by DFT methods.  相似文献   

2.
Novel monobasic tridentate ONS donor ligand (HL) was synthesized from the condensation reaction of chromone-3-carboxaldehyde with S-benzyldithiocarbazate (SBDTC). Reaction of the ligand with the metal ions copper(II), nickel(II), cobalt(II), oxidovanadium(IV), cerium(III), manganese(II), zinc(II), and cadmium(II) afforded dimeric complexes with the general formula [ML(Y)m(H2O)x]2·(Y)m·nH2zCH3OH, Y?=?NO3 or Cl, m?=?0–2, x?=?0–2, n?=?0–2, and z?=?0–1 for all complexes except oxidovanadium(IV) complex which has the formula [VOL(H2O)]2(SO4). Structures of the ligand and its metal complexes were established through elemental, spectroscopic data (FT-IR, UV-Vis, and mass), thermal analyses, as well as conductivity and magnetic susceptibility measurements. The geometrical structures of the metal complexes are octahedral and square planar. The ligand and its complexes were subjected to in vitro bioassays against the gram-negative and gram-positive bacteria and the fungus strain with good results for some of these compounds. The antitumor activity of the ligand and its copper(II) and oxidovanadium(IV) complexes were investigated against HepG2 cell line. The molecular parameters of the ligand and its metal complexes have been calculated on the basis of DFT level implemented in the Gaussian 09 program, and computed data were correlated with the experimental results. The HOMO→LUMO electron transition potentially occurs from S-benzyldithiocarbazate to chromone moieties with 4.048?eV. The Mn(II) complex has the highest value of energy barrier, while Cu(II) complex has the lowest value among the complexes. All synthesized complexes have energy gap lower than free ligand and therefore these complexes are more reactive than the free ligand.  相似文献   

3.
Abstract

New Cu(II) complexes Cu(L′x)2, where L′x=L′1, L′2, L′3, L′4 are monoanion of unsubstituted, 5-Cl, 5-Br and 3,5-di-Br-substituted 2-hydroxybenzylamines of redox-active N-(3,5-di-tert-butyl-1-hydroxyphenyl)-2-hydroxybenzylamines were synthesized. Each compound of L′xH and Cu(L′x)2 as well as products of their oxidation and reduction by PbO2 and PPh3, respectively, was characterized by IR, UV-visible and ESR spectroscopy. ESR results showed that one-electron oxidation of mononuclear tetrahedrally distorted Cu(L′x)2 chelates with PbO2, via C-C coupling of the Cu(II)-stabilized ligand radical intermediates and by the oxidative dehydrogenation of amine-chelates, produce new Cu(II) complexes with square-planar geometry. The powder ESR spectra of these new Cu(II) complexes exhibit a triplet-state type pattern with the zero-field splitting due to interaction between the copper(II) pairs. Interaction of Cu(L′x)2 with PPh3 via intramolecular ligand-metal electron transfer results in the formation of radical species and reduction of the metal center. All radical intermediates were characterized by ESR parameters.  相似文献   

4.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

5.
Three new copper(II) complexes [Cu(PSBP)2](NO3)(BF4) (1), [Cu(DAPBMA)2](BF4)2 (2), and [Cu(ImH)4(NO3)2] (3), where PSBP = 4-phenylsemicarbazide-2-benzoylpyridine, DAPBMA = 2,6-diacetylpyridine-bis-4-methoxyaniline, and ImH = Imidazole, have been synthesized and characterized by elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band electron paramagnetic resonance (EPR), electronic spectroscopy, and cyclic voltammetry. Frozen solution EPR spectra of the complexes have axial features with g > g > 2.003 suggesting the presence of a d x 2? y 2 ground state. Single crystal X-ray analyses of 13 reveal the presence of distorted octahedral geometry. All complexes exhibit significant superoxide dismutase activity.  相似文献   

6.
A new azohydrazone, 2-hydroxy-N′-2-hydroxy-5-(phenyldiazenyl)benzohydrazide (H3L) and its copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), cadmium(II), mercury(II), vanadyl(II), uranyl(II), iron(III), and ruthenium(III) complexes have been prepared and characterized by elemental and thermal analyses as well as spectroscopic techniques (1H-NMR, IR, UV-Vis, ESR), magnetic, and conductivity measurements. Spectral data showed a neutral bidentate, monobasic bidentate, monobasic tridentate, and dibasic tridentate bonding to metal ions via the carbonyl oxygen in ketonic or enolic form, azomethine nitrogen, and/or deprotonated phenolic hydroxyl oxygen. ESR spectra of solid vanadyl(II) complex (2), copper(II) complexes (3–5), and (7) and manganese(II) complex (10) at room temperature show isotropic spectra, while copper(II) complex (6) shows axial symmetry with covalent character. Biological results show that the ligand is biologically inactive but the complexes exhibit mild effect on Gram positive bacteria (Bacillus subtilis), some octahedral complexes exhibit moderate effect on Gram negative bacteria (Escherichia coli), and VO(II), Cd(II), UO(II), and Hg(II) complexes show higher effect on Fungus (Aspergillus niger). When compared to previous results, metal complexes of this hydrazone have a mild effect on microorganisms due to the presence of the azo group.  相似文献   

7.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

8.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

9.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

10.
Tridentate Schiff bases (H2L1 or H2L2) were derived from condensation of acetylacetone and 2-aminophenol or 2-aminobenzoic acid. Binuclear square pyramidal complexes of the type [M2(L1)2]?·?nH2O (M?=?Fe–Cl, n?=?0; M?=?VO, n?=?1) were accessed from interaction of H2L1 with anhydrous FeCl3 and VOSO4?·?5H2O, respectively. A similar reaction with H2L2, however, produced mononuclear complexes [ML2(H2O) x ]?·?nH2O (M=Fe–Cl, x?=?0, n?=?0; M=VO, x?=?1, n?=?1). The compounds were characterized using elemental analysis, FT-IR, UV-Vis, and NMR (for ligand only), and mass spectroscopies and solution electrical conductivity studies. Magnetic susceptibility measurements suggest antiferromagnetic exchange in binuclear Fe(III) and VO(IV) complexes. Thermo gravimetric analysis (TGA) provided unambiguous evidence for the presence of coordinated as well as lattice water in [VOL2(H2O)]?·?H2O. Cyclic voltammetric studies showed well-defined redox processes corresponding to Fe(III)/Fe(II) and VO(V)/VO(IV). In vitro antimicrobial activities of the compounds were investigated against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeroginosa, Escherichia coli, Bacillus subtilis, and Proteus vulgaris. H2L1 and its binuclear complexes exhibited pronounced activity against all the microorganisms tested.  相似文献   

11.
Two Schiff-base copper(II) complexes, bis(N-n-butyl-5-chlorosalicylaldiminato) copper(II) (1) and bis(N-n-butyl-4-methoxysalicylaldiminato) copper(II) (2), were synthesized and their solid-state structures were determined by X-ray crystallography. Complex 1 displays a distorted square-planar geometry, while 2 possesses square-planar geometry. Copper(II) complexes 1 and 2 showed strong inhibitory activity against jack bean urease (IC50?=?2.7, 3.5?µmol?L?1), compared with acetohydroxamic acid (IC50?=?63.00?µmol?L?1). A molecular modeling study was carried out via the DOCK program to gain understanding of the potent inhibitory activity of these copper species against jack bean urease.  相似文献   

12.
Four lanthanide complexes, [La2(2,4-DClBA)6(5,5′-DM-2,2′-bipy)2(H2O)2]·2C2H5OH (1) and [Ln(2,4-DClBA)3(5,5′-DM-2,2′-bipy)(C2H5OH)]2 (Ln = Pr(2), Sm(3), Gd(4); 2,4-DClBA = 2,4-dichlorobenzoate; 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′-bipyridine), were synthesized and characterized via elemental analysis, infrared spectra and thermogravimetric analysis (TG). The crystal structures of 1 and 2–4 are different; Each La3+ is nine-coordinate adopting a distorted mono-capped square antiprism, while the Ln3+ ions of 2–4 are all eight-coordinate with a distorted square antiprismatic molecular geometry. There are subtle changes in the local coordination geometry of the lanthanide–5,5′-DM-2,2′-bipy complexes. Binuclear 1 complexes are stitched together via two kinds of hydrogen bonding interactions (OH?O and CH?O) to form 1-D chains along the y axis, while the units of 2–4 are stitched together via CH?O to form 1-D chains along the x axis. TG analysis revealed thermal decomposition processes and thermal stabilities of the complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.  相似文献   

13.
New antimony(III) chloride complexes with heterocyclic thioamides, thiourea (TU), 2-mercapto-5-methyl-benzimidazole (MMBZIM), 3-methyl-2-mercaptobenzothiazole (MMBZT), 2-mercaptopyrimidine (PMT), 2-mercaptopyridine (PYT) of formulae [SbCl3(TU)2] (1), [SbCl3(MMBZIM)2] (2), [SbCl3(MMBZT)2] (3), [SbCl3(PMT)2] (4), [SbCl3(μ 2-S)(PYT)2] (5) were synthesized and characterized by elemental analysis, FT-IR and FT-Raman spectroscopies, and TG-DTA analysis. The crystal structure of 5 was also determined by X-ray diffraction. [C10H10Cl3N2S2Sb] (5) crystallizes in space group C2/c, with a?=?25.0169(10)?Å, b?=?9.7952(3)?Å, c?=?12.9329(5)?Å, β?=?109.702(4)°, and Z?=?8. Crystals of 5 grown from acetonitrile solutions adopt a square-pyramidal geometry. The equatorial plane is formed by three chlorides and one sulfur atom from the thione ligand while the second sulfur is axial. The complexes were evaluated for their biological activities and compared with [SbCl3(MMI)2] (6) (MMI?=?2-mercapto-1-methylimidazole) and other isostructural ones. The complexes showed moderate cytostatic activity against murine leukemia cells (L1210), murine mammary carcinoma cells (FM3A), human T-lymphocyte (Molt4/C8, CEM), and human cervix carcinoma (HeLa) cells. The chloro and iodo derivatives show better cytostatic activity than the bromo ones.  相似文献   

14.
The reaction of α-[SiMo12O40]4? with trivalent cations Ln3+ and N-methyl-2-pyrrolidone leads to a series of complexes of formula [Ln(NMP)4(H2O) n ]H[SiMo12O40]?·?2NMP?·?mH2O [where Ln?=?La (1), Pr (2), Nd (3), Sm (4), Gd (5), n?=?4, Ln?=?Dy (6), Er (7), n?=?3. NMP?=?N-methyl-2-pyrrolidone]. The syntheses, X-ray crystal structures, IR, and ESR spectra and thermal properties of the complexes 1, 2, 4, 6, 7 have been reported previously. Here, we report X-ray crystal structures, IR, UV, ESR spectra and thermal properties of the complexes [Nd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?1.5H2O (3), and [Gd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?H2O (5). In addition, the electrochemical behaviour of this series of complexes in aqueous solution and aqueous-organic solution has been investigated and systematic comparisons have been made. All these complexes exhibit successive reduction process of the Mo atoms.  相似文献   

15.
Three new complexes [CuL(N3)2] (1), [CuL(SCN)2] (2), and [CoL(SCN)3] (3) (L?=?1,4,7-tribenzyl-1,4,7-triazacyclononane) have been synthesized and structurally characterized. Complex 1 crystallizes in monoclinic space group P2(1)/n with unit cell parameters a?=?14.105(7), b?=?8.999(5), c?=?21.603(11)?Å, β?=?100.470(7)°. While 2 crystallizes in triclinic space group P-1 with unit cell parameters a?=?9.6380(16), b?=?10.6993(18), c?=?15.798(3)?Å, α?=?106.636(3), γ?=?116.478(3)°. Complex 3 crystallizes in trigonal space group P–3c1 with unit cell parameters a?=?14.744(3), b?=?14.744(3), c?=?16.098(4)?Å, γ?=?120°. Elemental analysis, IR, UV-vis spectra of complexes 13 and ESR spectra of complexes 12 were also determined.  相似文献   

16.
Binuclear ruthenium(III) complexes [RuX3L]2?·?nH2O (X?=?Cl, L?=?L1, L2, L3; n?=?1, L4 and L5, X?=?Br; L?=?L3), [RuX3L1.5]2?·?nH2O (X?=?Br, L?=?L1; n?=?0, L4; n?=?6 and L5; n?=?10), and [RuX3L2]2 (X?=?Br, L?=?L2) have been isolated by treatment of hydrated RuX3 (X?=?Cl/Br) in acetone with 2-(2′-aminophenylbenzimidazole) (L1), 2-(3′-aminophenylbenzimidazole) (L2), 2-[(3′-N-salicylidinephenyl)benzimidazole] (L3), 2-(3′-pyridylbenzimidazole) (L4), and 2-(4′-pyridylbenzimidazole) (L5) in acetone. The complexes were characterized by elemental analysis, conductivity and magnetic susceptibility measurements, IR, electronic, EPR, and mass spectral studies. The complexes were dimeric; based on analytical and spectral studies, an octahedral geometry was proposed for the complexes. The synthesized complexes were screened against Gram-positive and Gram-negative bacteria and fungi.  相似文献   

17.
Synthesis, characterization and thermal behavior of four compounds that have the general formula [Cu{Pd(CN)4}(L)x]n, in which en=1,2-diaminoethane and pn=1,3-diaminopropane (L=en, x=1 (I); L=pn, x=1 (II); L=en, x=2 (III); L=pn, x=2 (IV)) were described in this work. The complexes were studied by elemental analysis, infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were characterized by X-ray powder diffraction and found as a mixture of CuO and PdO. The stoichiometry of the compounds was established via thermogravimetric and elemental analyses and their structures were proposed as coordination polymers based on their infrared spectra. The following thermal stability sequence was found: IV<I=II<III.  相似文献   

18.
A series of binuclear Schiff-base complexes of zinc(II) and mercury(II) containing bidentate ligands (HL) [HL?=?salicylidene-2-methyl-1-aminobenzene (HL1), salicylidene-2-aminopyridine (HL2), and salicylidene-3-nitro-1-aminobenzene (HL3)] with “N” and “O” donors have been synthesized by simple metathetic reactions of anhydrous metal chlorides with sodium salts of Schiff bases (in tetrahydrofuran (THF)/MeOH) in equimolar ratio to produce [(µ-Cl)2M2(L)2?·?xTHF] [where M?=?Zn(II) and Hg(II); L?=?HL1, HL2, and HL3; x?=?0 for (1), (4), (6) and x?=?2 for (2), (3), (5)]. The main emphasis on the complexes [(µ-Cl)2M2(L)2?·?2THF] (2), (3), and (5) is given due to their five-coordinate environment around metal ions. The complexes have been characterized by elemental analyses (M, Cl, C, H, N), melting point, and spectral (FT-IR, 1H-NMR, and 13C-NMR) studies. The structural composition of the complexes has been determined by FAB-MS spectral studies. FAB-MS showed the isotopic molecular ion peak [M+] and fragments supporting the formulation. Powder X-ray diffraction study of 6 is also reported showing the crystallite size (404.5?Å) of the complex.  相似文献   

19.
Ab initio calculations of chloride complexes of Au, Hg, Tl, Pb, and Bi in anomalous oxidation states (2S1/2 electron state) were carried out by the Becke-Lee-Yang-Parr density functional method using the Dunning-Hay LanL2DZ basis set. Optimum geometric parameters and electronic characteristics of MCl n (H2O) m n (n=1–4 andm=0,4,5) complexes were determined. In each of the considered series the spin, population on the central metal atom decreases as its atomic number increases. The energy of transition of the unpaired electron to the lowest unoccupied MO decreases in the same order. The unpaired electron occupies an orbital that is mostly a linear combination of the s-orbital of the metal atom and the p-orbital of the Cl atom (the antibonding σ-orbital of the M−Cl bond). Distinctions in the changes in spectral properties of aquacomplexes and chloride complexes in isoelectronic series, observed as the degree of oxidation of the metal atom increases, were explained. The results of calculations are in agreement with the experimental data obtained by ESR and optical spectroscopy. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1049–1055, June, 1999.  相似文献   

20.
Two new complexes, [Ni(en)2(mtt)2] (1) and [Co(en)2(mtt)2](mtt) (2) (Hmtt = 5-methyl-1,3,4-thiadiazole-2-thiol and en = ethylenediamine), have been synthesized and characterized by various physicochemical techniques. Complexes 1 and 2 crystallize in monoclinic and orthorhombic system with space groups P 21/n and P 21 21 21, respectively. The molecular structures of 1 and 2 show that the metal ions are six-coordinate bonded through four equatorial nitrogens of two en and two axial nitrogens of mtt ligands. The crystal structures of the complexes reveal that mtt is present in thione form and bound to the metal ion through the thiadiazole nitrogen. The crystal structures of the complexes are stabilized by various intermolecular hydrogen bonding providing supramolecular architecture. Complex 2 is also stabilized by weak π···π interactions occurring between two thiadiazole rings. The bioefficacies of the ligand and complexes have been examined against the growth of bacteria to evaluate their antimicrobial potential. The biological results suggest that 2 is more active than the ligand and 1 against the tested bacteria. The geometries of the ligand and the complexes have been optimized by the DFT method and the results are compared with the X-ray diffraction data. The Co(III) complex exhibits an irreversible Co(III)/Co(II) process while the Ni(II) complex displays quasi-reversible Ni(II)/Ni(III) redox processes with large peak separation as compared to that expected for a one electron process which is thought to be coupled with some chemical reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号