首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Structural analyses indicate that the ligand and lanthanide ions form mononuclear 10-coordinate ([Ln L2 · (NO3)2] · NO3 [Ln(III) = La, Sm, Nd, and Yb; L is chromone-3-carbaldehyde-(isonicotinoyl) hydrazone) complexes with 1 : 2 metal-to-ligand stoichiometry. DNA-binding studies show that the ligand and its lanthanide complexes can bind to calf thymus DNA via an intercalation mode with binding constants of 105 (mol L?1)?1, and the lanthanide complexes bind stronger than the free ligand alone. Antioxidant activities of the ligand and lanthanide complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro. The ligand and complexes possess strong scavenging effects, and the lanthanide complexes show stronger antioxidant activities than the ligand and some standard antioxidants, such as vitamin C.  相似文献   

2.
The interaction of HE–Eu(III) complex (HE?=?hematoxylin) with Herring-sperm DNA (hsDNA) has been studied by absorption spectra, fluorescence, and viscosity measurements in physiological buffer (pH?=?7.40). The binding constant of HE–Eu(III) complex to hsDNA was obtained by double reciprocal method at 298 and 310?K and the corresponding thermodynamic parameters (Δr Hm??=?8.55?×?104?J?mol?1, Δr Gm??=??3.01?×?104?J?mol?1, Δr Sm??=?387.95?J?mol?1?K?1) were calculated, showing that the interaction between HE–Eu(III) complex and hsDNA was driven mainly by entropy. The value of K indicated that the binding mode of HE–Eu(III) complex with DNA was not classical intercalation. These results were further supported by viscosity method and competitive binding experiment. Scatchard analysis suggests that the interaction mode was a mixed binding, which contains partial intercalation and groove binding.  相似文献   

3.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

4.
A La(III) complex, [LaIIICl2(NOR)2]Cl (2), containing norfloxacin (NOR) (1), a synthetic fluoroquinolone antibacterial agent, has been synthesized and characterized by elemental analysis, IR, UV–vis spectra and 1H NMR spectroscopy, and molar conductance measurements. The interaction between 2 and CT-DNA was investigated by steady-state absorption and fluorescence techniques in different pH media, and showed that 2 could bind to CT-DNA presumably via non-intercalative mode and the La(III) complex showed moderate ability to bind CT-DNA compared to other La(III) complexes. The binding site number n, and apparent binding constant KA, corresponding thermodynamic parameters ΔG#, ΔH#, ΔS# at different temperatures were calculated. The binding constant (KA) values are 0.23 ± 0.05, 0.56 ± 0.05, and 0.18 ± 0.08 × 105 L mol?1 for pH 4, 7, and 11, respectively. It was also found that the fluorescence quenching mechanism of CT-DNA by La(III) complex was a static quenching process.  相似文献   

5.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

6.
7.
The kinetics of formation of the 1?:?1 complex of chromium(III) with 1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate (1,3-pddadp) were followed spectrophotometrically at λ max?=?557?nm. The reaction was first-order in chromium(III). Increasing the 1,3-pddadp concentration from 2.2?×?10?2 to 0.11?mol?dm?3 accelerated the reaction rate. Increasing the hydrogen ion concentration from 1.995?×?10?5 to 6.31?×?10?4 mol?dm?3 retarded the reaction rate. The reaction rate was also retarded by increasing ionic strength and dielectric constant of the reaction medium. A mechanism was suggested to account for the results obtained which involves ion-pair formation between the various reactants. Values of 22?kJ?mol?1 and ?115?J?K?1 mol?1 were obtained for the energy and the entropy of activation, respectively, which indicate an associative mechanism. The logarithm of the formation constant of the 1?:?1 complex formed was 11.3.  相似文献   

8.
《Electroanalysis》2006,18(12):1223-1226
A sensitive catalytic adsorptive stripping voltammetric procedure for determination of traces of total chromium in environmental samples is reported. The method is based on the preconcentration of a Cr(III)? H2DTPA complex by adsorption at the HMDE from an acetate buffer solution at the potential ?1.0 V vs. Ag/AgCl. Total chromium was determined as Cr(III) after reduction of Cr(VI) to Cr(III) by NaHSO3. In order to stabilize the signal of Cr(III) the measurements were performed at 5 °C. The calibration graph for chromium for an accumulation time of 60 s was linear in the range from 5×10?10 to 5×10?8 mol L?1. The relative standard deviation for a chromium concentration of 1×10?8 mol L?1 was 3.9% (n=5). The detection limit for accumulation time of 60 s was about 8×10?11 mol L?1. The validation of the procedure was performed by the analysis of the certified reference materials.  相似文献   

9.
A new cobalt(II) complex [Co(DCA)(bipy)(H2O)] (DCA?=?demethylcantharate, 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate, C8H8O5; bipy?=?2,2′-bipyridine, C10H8N2) was synthesized from cobalt acetate, demethylcantharidin, and bipy. This complex was characterized by elemental analysis, molar conductance, infrared spectra, and X-ray single-crystal diffraction. It crystallized in orthorhombic crystal system and Pbca space group. The DNA binding of the complex was investigated by electronic absorption spectra and viscosity measurements. The complex binds to DNA via partial intercalation with binding constant K b of 4.02?×?104?L?M?1. The complex could quench the intrinsic fluorescence of bovine serum albumin through static quenching. The binding constant K A was 7.28?×?106?L?M?1 and binding site was one.  相似文献   

10.
The kinetics of oxidation of triethanolamine (TEA) by diperiodatoargenate(III) anion, [Ag(HIO6)2]5?, has been studied in aqueous alkaline medium by conventional spectrophotometry. The reaction is pseudo-first-order in [Ag(III)] disappearance with kobs = (k1 + k2[OH?]) K1K2[TEA]/{[H2IO63?]e + K1 + K1K2[TEA]}, where k1 = 8.05 × 10?3 S?1, k2 = 0.46 M?1 S?1, K1 = 6.15 × 10?4 M, and K2 = 537 M?1 at 25°C, and μ = 0.30 M. Based on the inference that an inner-sphere complex is formed by indirect replacement of a ligand of [Ag(HIO6)2]5? by a TEA molecule, a reaction mechanism has been proposed. The complex undergoes redox by two modes, both internal and one hydroxide ion assisted.  相似文献   

11.
A Schiff base bis(N-salicylidene)-3-oxapentane-1,5-diamine (H2L) and its Cu(II) complex, [Cu2(L)2]?CHCl3, have been synthesized and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray analysis revealed that the complex is a centrosymmetric binuclear neutral entity, in which Cu(II) is a five-coordinate in a distorted trigonal bipyramidal geometry. The DNA-binding properties of the free ligand and the complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the H2L and the complex to DNA via the intercalation mode and the binding affinity of the complex were higher than that of the H2L. The intrinsic binding constants Kb of the ligand and the complex are 2.2 × 104 and 2.7 × 104 M?1, respectively. Antioxidant assay in vitro shows the Cu(II) complex possesses significant antioxidant activities and better scavenging activity than the H2L and other antioxidants.  相似文献   

12.
First Ni(II) ternary complex using the quinolone antibacterial agent enoxacin (HEn) as ligand and 1,10‐phenanthroline as co‐ligand has been synthesized and characterized. It is a mononuclear structure, in which enoxacin acts as a bidentate ligand bound to the metal through the ketone oxygen and a carboxylate oxygen atom. The complex exhibited good binding propensity to human and bovine serum albumin proteins having relatively high binding constants (6.40×104 and 7.12×104, respectively). The investigation of the interaction of the complex with calf‐thymus (CT) DNA has been performed with UV and circular dichroism (CD) spectroscopies, indicating that they bind to CT DNA probably by the intercalative binding mode. The binding constant (Kb) of the complex with CT DNA calculated with UV is 2.03×105, which is higher than that of free enoxacin drug (2.09×104) and even higher than that of typical intercalation indicator (1.23×105) of ethidium bromide (EB). Fluorescence competitive studies with EB have revealed that the complex exhibited the ability to displace the DNA‐bound EB using the intercalative binding site. In addition, the antimicrobial activity showed that the complex exhibited a little bit good inhibition (MIC=1.843 (g·mL?1) against B. subtilis than free HEn.  相似文献   

13.
Square-pyramidal complexes [Cu(NFL)(A n )Cl]?·?5H2O (A n ?=?phenanthroline derivatives and NFL?=?deprotonated norfloxacin) have been synthesized and characterized. Interactions with Herring Sperm DNA and pUC19 DNA have been investigated. Mode and extent of interaction was measured by the perturbation in absorbance of complexes in the absence and presence of DNA. Hydrodynamic volume change and gel electrophoretic results were also kept under consideration. Synthesized complexes bind to DNA via intercalation with binding constant 0.875–1.446?×?104?(mol?L?1)?1 based on bathochromism and hypochromism observed. Intercalative binding of complexes with DNA was further supported by relative viscosity, where 5 intercalates more strongly with most increase in relative viscosity, and K b value of 1.446?×?104?(mol?L?1)?1. Evaluation of electrophoretic separation of plasmid on agarose gel reveals that 5 cleaves more efficiently. Square-pyramidal geometry at the metal center supports superoxide-dismutase (SOD)-mimic behavior in addition to an electron-withdrawing group on the ancillary ligand stabilizing Cu–O bonding.  相似文献   

14.
The selective identification of dopamine is a significant issue because this compound is an important neurotransmitter closely related to Parkinson’s disease and other mental disorders. 2-(4-Boronophenyl)quinoline-4-carboxylic acid (PBAQA) has been previously reported as a water-soluble fluorescent probe for catechol. However, there are no significant differences in the binding constants between catechol and catecholamines, such as dopamine or levodopa. Here a series of bis-boronic acid compounds based on PBAQA were synthesized and the binding activities were characterized. As a representative compound, the binding constant of 4-(4-((3-(3-borono-4-chlorobenzamido)propyl)carbamoyl)quinolin-2-yl)boronic acid to dopamine is up to 104?L?mol?1 and much higher than previously reported boronic acid probes. Dopamine selectivity may be achieved by the variation of the substituents in the probe molecules. 4-(4-((3-(3-Borono-4-methoxybenzamido)propyl)carbamoyl)quinolin-2-yl)boronic acid has a stronger binding affinity to dopamine (Ka=5204?±?106?L?mol?1) than catechol (Ka=2588?±?273?L?mol?1) or levodopa (Ka=2383?±?273?L?mol?1). This fluorescence response was used for determining dopamine in a range from 5?×?10?5?mol?L?1 to 5?×?10?4?mol?L?1 with a detection limit of 7.7?×?10?6?mol?L?1. This compound has been successfully used for the assay of dopamine in rabbit plasma, exhibiting excellent specificity. It is believed that synthesized compounds hold great promise as practical platforms to monitor dopamine levels.  相似文献   

15.
A simple and sensitive differential pulse stripping voltammetric method was developed for the determination of antimony(III) using a selenium-doped carbon paste electrode modified with an ionic liquid, graphene, and gold nanoparticles. The conditions, including the mass of graphene, concentration of hydrochloric acid, deposition potential, and deposition time were optimized by single-factor experiments. Under the optimal conditions, a linear equation of ISb(III) (µA)?=??16.9882???11.0929 c (µmol/L) (R?=?0.9965) and a detection limit of 2.7?×?10?8?mol/L were obtained for 8.0?×?10?8 to 4.8?×?10?6?mol/L antimony(III). The response shows that the sensor enhances the sensitivity of antimony due to the high conductivity and large surface areas of the ionic liquid, graphene, and gold nanoparticles. This electrode may provide a new sensing platform for the determination of antimony.  相似文献   

16.
Two new complexes, [Co(L)2]Cl·(MeOH)2 (1) and [Ni(L)2]4·EtOH (2) (L?=?(E)-2-(amino((pyridin-2-ylmethylene)amino)methylene)maleonitrile), were synthesized and characterized by X-ray crystallography, IR, UV, and fluorescence spectroscopy. According to X-ray crystallographic studies, each metal was six-coordinate with six nitrogens from two ligands. Both complexes form two-dimensional supramolecular networks via hydrogen bonding and π–π interactions. Ultraviolet and visible spectra showed that absorptions arise from π–π ?, MLCT, and dd electron transitions. Fluorescence spectroscopy revealed moderate intercalative binding of these two complexes with EB–DNA, with apparent binding constant (K app) values of 9.14?×?105 and 3.20?×?105?M?1 for Co(III) and Ni(II) complexes, respectively. UV–visible absorption spectra showed that the absorption of DNA at 260?nm was quenched for 2 but quenched then improved for 1 with addition of complexes, tentatively attributed to the effect of the combined intercalative binding and electrostatic interaction for 1.  相似文献   

17.
儿茶酚胺是一类非常重要的神经递质,在人体的心血管系统、神经系统、内分泌腺、肾脏、平滑肌等组织系统的生理活动中起着广泛的调节作用。肾上腺素为儿茶酚胺的一种,建立灵敏、高效的肾上腺素检测技术具有重要的临床意义。本文将银(Ⅲ)配合物与鲁米诺组成新的流动注射化学发光体系,利用碱性介质中肾上腺素对三价银配合物-鲁米诺化学发光体系有明显的增强效应来测定肾上腺素的含量,并据此建立了高效测定肾上腺素的流动注射化学发光新方法。在优化的条件下,该方法测定肾上腺素的线型范围为1.0×10-9~1.0×10-7 mol L-1,检出限为8.0×10-10 mol L-1,对1.5×10-8 mol L-1肾上腺素11次平行测定,其相对标偏差为2.9%。利用建立的分析方法测定了药物肾上腺素,并对三价银-鲁米诺化学发光新体系测定肾上腺素的反应机理进行了讨论。  相似文献   

18.
The reduction of Fe(CN)5L2? (L = pyridine, isonicotinamide, 4,4′‐bipyridine) complexes by ascorbic acid has been subjected to a detailed kinetic study in the range of pH 1–7.5. The rate law of the reaction is interpreted as a rate determining reaction between Fe(III) complexes and the ascorbic acid in the form of H2A(k0), HA?(k1), and A2? (k2), depending on the pH of the solution, followed by a rapid scavenge of the ascorbic acid radicals by Fe(III) complex. With given Ka1 and Ka2, the rate constants are k0 = 1.8, 7.0, and 4.4 M?1 s?1; k1 = 2.4 × 103, 5.8 × 103, and 5.3 × 103 M?1 s?1; k2 = 6.5 × 108, 8.8 × 108, and 7.9 × 108 M?1 s?1 for L = py, isn, and bpy, respectively, at μ = 0.10 M HClO4/LiClO4, T = 25°C. The kinetic results are compatible with the Marcus prediction. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 126–133, 2005  相似文献   

19.
The peptide linkage Schiff base (H2L) and its complexes have been synthesized and fully characterized by elemental analysis, UV–Vis, FTIR, 1H-NMR, 13C-NMR, EPR, and FAB-mass spectra. The stoichiometry of the complexes is [ML] (where M = Cu(II), Co(II), Ni(II), Zn(II), and VO(IV)). All the complexes exhibit square-planar geometry except the vanadyl complex which has square-pyramidal geometry. Interactions of the complexes and free ligand with double-stranded calf thymus DNA (CT-DNA) are studied by UV-spectrophotometric, electrochemical, and viscosity measurements. The data suggest that all the complexes form adducts with DNA and distort the double helix by changing the base stacking. Vanadyl complex forms a weaker adduct to CT-DNA than other complexes, probably due to the square-pyramidal geometry. CT-DNA induces extensive distortion in the planarity of vanadyl complex as EPR spectral calculations reveal. The intrinsic binding constants (K b) of [ZnL], [CuL], [CoL], and [NiL] are 1.1 × 105, 1.4 × 105, 0.8 × 105, and 0.6 × 105 M?1, respectively. Photo-induced DNA cleavage indicates that all complexes cleave DNA effectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding for the synthesized complexes. The antimicrobial results indicate that the complexes inhibit the growth of bacteria and fungi more than the free ligand.  相似文献   

20.
A new cobalt(II) complex, [Co(C3H4N2)(C8H8O5)(H2O)2]·2H2O, of demethylcantharate(7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) with imidazole has been synthesized from cobalt chloride, demethylcantharidin (NCTD) and imidazole. The complex was characterized by elemental analysis, IR, and X-ray single crystal diffraction. The complex crystallized in the monoclinic crystal system and P21/m space group with a?=?0.634790(10)?nm, b?=?0.963030(10)?nm, c?=?1.221770(10)?nm, α?=?90°, β?=?95.9700(10)°, γ?=?90°, V?=?0.742844(15)?nm3, Mr ?=?383.22, Dc ?=?1.713?g?cm?3, Z?=?2, F(0?0?0)?=?398, μ?=?1.206?mm?1, the final R?=?0.0291, and wR?=?0.0837 [I?>?2σ(I?)]. The interaction of the complex with deoxyribonucleic acid (DNA) was studied by electronic absorption spectra, fluorescence spectra, and viscosity measurements, which indicate that the complex binds to calf thymus DNA through a partially intercalative mode. The binding constant K b for the complex was 2.62?×?104?L?mol?1. The antiproliferation activity test showed that the complex has high antiproliferative ability against human hepatoma cells SMMC7721 (with IC50 being 42.8?±?0.9?µmol?L?1) and human lung cancer cells A549 (with IC50 being 65.1?±?3.2?µmol?L?1). The inhibition rates of the complex are much higher than those of NCTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号