首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel three-dimensional supramolecular compound formed by Mn(II) and pyridine-2,5-dicarboxylic acid of formula [Mn(Pydc)2(H2O)2] (Pydc?=?pyridine-2,5-dicarboxylic acid) has been synthesized and characterized by elemental analyses, IR, electronic spectra, thermogravimetric analysis and X-ray diffraction techniques. The X-ray structure shows that the central Mn(II) ion is coordinated by two water molecules and two chelated Pydc ligands. Water molecules coordinate with Mn(II) ions in the cis mode. Intermolecular hydrogen bonds play an important role in stabilization of the lattice and construction of the supramolecular network.  相似文献   

2.
In this study, three novel Cu(II)-pyridine-2,5-dicarboxylate (pydc) complexes with 4-methylimidazole (4-Meim), [Cu(pydc)(H2O)(4-Meim)2]·H2O (1), imidazole (im), {[Cu(μ-pydc)(im)2]·2H2O}n (2), and 3,4-dimethylpyridine (dmpy), [Cu(μ-pydc)(H2O)(dmpy)]n (3) have been synthesized. Elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies have been performed to characterize the complexes. The molecular structures of mononuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. In 1 and 2, Cu(II) ions have distorted square planer geometry, while 3 has distorted octahedral coordination. The pyridine-2,5-dicarboxylate exhibits three different coordination modes namely bidentate (1), tridentate (2) and tetradentate (3). The complex 1 is further constructed to form three-dimensional framework by hydrogen bonding, C–Hπ and ππ stacking interactions. The adjacent chains of 2 and 3 are then mutually linked via hydrogen bonding, ππ and C–Hπ interactions, which are further assembled to form three-dimensional framework. 1 exhibits the magnetic moment value of 1.70 BM, which corresponds to one of the unpaired electron, while the polynuclear complexes 2 and 3 exhibit 1.58 and 1.46 BM, which is lower than the spin only value for one unpaired electron, indicates to antiferromagnetic effect. The first thermal decomposition process of all the complexes is endothermic dehydration. This stage is followed by partial (or complete) decomposition of the neutral and pydc ligands. In the later stage, the remained organic residue exothermically burns. The final decomposition products which identified by IR spectroscopy were the CuO.  相似文献   

3.
Three Co(II) and Cu(II)-pyridine-2,5-dicarboxylate (pydc) proton transfer compounds with 1,4-butanediamine (ben) and 2,2-dimethylpropane-1,3-diamine (dmpen), trans-(H2ben)[Co(pydc)2(H2O)2]·4H2O (1), trans-(H2dmpen)[Co(pydc)2(H2O)2]·2H2O (2) and (H2ben)2[Cu2(μ-pydc)4(H2O)2] (3) have been synthesized and characterized by the methods of elemental, spectroscopic (IR and UV-Vis), thermal (TG/DTG, DTA) analysis, magnetic measurement and single crystal X-ray diffraction. The crystallographic analysis revealed that the complexes consist of [Co(pydc)2(H2O)2]2− anion, bis(protonated) diamine cation (H2ben for 1 and H2dmpen for 2) and four and two crystal water molecules, respectively. The Co(II) ions are coordinated by two pydc and two aqua ligands. The bis(deprotonated) pydc ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of carboxylate group, creating a chelate ring. The distorted octahedral geometries are completed by two trans aqua ligands at axial positions. The molecular structure of the complex 3 consists of dinuclear [Cu2(μ-pydc)4(H2O)2]4− units and bis(protonated) 1,4-butanediammonium cation. In the structure, each Cu(II) ion is coordinated by two nitrogen and two oxygen atoms from two pydc ligands and one oxygen atom from aqua ligand, forming a distorted square pyramidal geometry.  相似文献   

4.
Four new luminescent complexes, namely, [Eu(aba)2(NO3)(C2H5OH)2] (1), [Eu(aba)3(H2O)2]·0.5 (4, 4′-bpy)·2H2O (2), [Eu2(aba)4(2, 2′-bpy)2(NO3)2]·4H2O (3) and [Tb2(aba)4(phen)2(NO3)2]·2C2H5OH (4) were obtained by treating Ln(NO3)3·6H2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4′-bpy=4, 4′-bipyridine, 2, 2′-bpy=2, 2′-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.  相似文献   

5.
We report the synthesis of two square-pyramidal copper(II) complexes, [Cu(2,5-pydc)(2-aepy)(H2O)]·H2O, 1, and [Cu(2,5-pydc)(2-ampy)(H2O)]·H2O, 2 (2-aepy = 2-(aminoethyl)pyridine, 2-ampy = 2-(aminomethyl)pyridine, 2,5-pydc = pyridine-2,5-dicarboxylic acid or isocinchomeronic acid). The synthesized complexes have been characterized by X-ray diffraction, FT-IR, elemental, and thermal analysis techniques. The crystal structure of 1 was established by X-ray analysis. Powder X-ray diffraction analysis showed that the complexes are pure. The inhibition of human serum paraoxonase 1 (PON 1, EC 3.1.8.1) enzyme with these complexes were investigated. We used diethyl 4-nitrophenyl phosphate as a substrate to measure the paraoxonase activity of PON 1 enzyme spectrophotometrically. Complexes 1 and 2 decreased the in vitro PON 1 activity with different inhibition mechanisms. Complexes 1 and 2 inhibited paraoxonase activity of this enzyme as competitively and noncompetitively, respectively.  相似文献   

6.
7.
A polymeric silver(I) complex, [Ag4(μ-pydc)2(μ-pm)2]n (1) (pydc = pyridine-3,5-dicarboxylate and pm = pyrimidine), has been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. X-ray crystallographic data of 1 revealed that pydc exhibits two different coordinaton modes that play a key role in the construction of the 3-D crystal network including Ag–carboxylate clusters in which close Ag–Ag distances exist. The magnitudes of close Ag–Ag interactions in second-order energy (E2) have been revealed by natural bond orbital analysis performed with single point energy calculation using the experimental geometry of 1. Furthermore, the luminescent properties of 1 show strong fluorescence with two emission maxima in the visible region. Also, 1 has antifungal activity on Candida albicans (MIC value, 4 μg mL?1) and good antibacterial activity on micro-organisms (MIC value, 64–256 μg mL?1).  相似文献   

8.
A new azido adduct of a tridentate Schiff-base copper(II) complex has been synthesized and characterized structurally and magnetically. X-ray single crystal structure analysis reveals that the asymmetric unit of [Cu2(L)21,1-N3)2][Cu(L)(N3)] (1) [HL = 1-(N-ortho-hydroxyacetophenimine)-2,2-diethyl-aminoethane] has two independent moieties. One of these forms a dimer, containing end-on azido bridges, with its center of inversion related equivalents. The complex crystallizes in monoclinic space group P21/c with a = 10.112(2), b = 31.938(4), c = 9.718(2) Å and β = 95.00(2)°. Variable temperature magnetic susceptibility data show antiferromagnetic interactions between copper(II) centers.  相似文献   

9.
A copper(II) complex with 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)pyrimidin-4-amine (L), [CuLCl2], has been synthesized. This compound is formed irrespective of the Cu?:?L molar ratio (Cu?:?L?=?1?:?1, 2?:?1, and 20?:?1) in the MeOH/H2O/DMF mixture as a single product. ESI-MS data demonstrate that the additional amount of CuCl2 above the Cu?:?L?=?1?:?1 molar ratio, is effectively solvated, and high-nuclearity species are formed in trace amounts in the solution. The complex adopts a distorted square-pyramidal geometry with two chlorides and three nitrogen atoms from L. The electronic spectrum of the complex contains a broad band with a maximum at 12,820?cm?1 within the region characteristic for square-pyramidal chromophores CuA5 (A?=?Cl, N). Due to Cu?···?Cl contacts, the molecules of [CuLCl2] form the dinuclear [CuLCl2]2 unit. Surprisingly, the NH2-group participates in the formation of NH?···?Cl hydrogen bonds instead of the formation of (NH?···?N3(pyrimidine))2 synthon, which is common for N-heteroaromatic compounds containing the NH2-group in the α-position to aza-atom. These hydrogen bonds together with Cu?···?Cl contacts result in the formation of a 3-D-structure.  相似文献   

10.
Abstract

Two coordination complexes, [Mn2(pydco)2(phen)2(H2O)2]·2H2O (1) and [Mn(3-pyco)2(H2O)4] (2), based on Mn(II), pyridine-2,5-dicarboxylic acid N-oxide (H2pydco), and 1,10-phenanthroline (phen) as organic ligands have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X-ray diffraction. We have synthesized the first Mn(II) complex of H2pydco. Interestingly, in situ hydrothermal decarboxylation occurred in 2 and (pydco)2– was totally transformed into pyridine-3-carboxylate N-oxide (3-pyco) under hydrothermal conditions. The complexation reactions of these molecules with Mn2+ ions were investigated by means of solution studies. The stoichiometry of the most abundant species in the solution (prior to the pH at which precipitation occurs) was very close to that of the corresponding crystalline solid-state complexes.  相似文献   

11.
A novel copper(II) thiocyanate complex [Cu(im)2(NCS)2] 1 (im=imidazole) has been prepared and characterized by spectroscopic analysis and crystallographic method. This supramolecular compound exhibits a three-dimensional solid state structure constituted by N–HS hydrogen bonds and π–π stacking interactions. The compound in DMF solutions has a very strong third-order non-linear optical (NLO) behavior with absorption coefficient and refractive index 2=1.18×10−11 mw−1, n2=−9.00×10−16 m2w−1, respectively, and third-order NLO susceptibility χ(3) of 7.00×10−10 esu.  相似文献   

12.
The reaction of phenylmercury(II) acetate and cadmium(II) acetate with a refluxed solution of diacetylmonoxime and morpholine N-thiohydrazide formed a novel phenylmercury(II) complex, [PhHg(Hdammthiol)] (1) and a cadmium(II) complex, [Cd(Hdammthiol)2] (2), respectively (where H2dammthiol is the thiol form of diacetylmonoximemorpholine N-thiohydrazone (Hdammth) formed by the condensation of diacetylmonoxime and morpholine N-thiohydrazide in the presence of phenylmercury(II) and cadmium(II) ions). The complexes were characterised by elemental analyses and spectral data (electronic, infrared and 1H NMR) and also by X-ray crystal structure analysis. The X-ray crystallography shows that the phenylmercury(II) complex attained a tricoordinated distorted T-shaped structure, while the cadmium(II) complex attained a trapezoidal bipyramidal geometry. The phenylmercury(II) complex forms a two-dimensional sheet via C–H?O and O–H?N hydrogen bonding and also forms a two-dimensional supramolecular dimer, having C–H?π synthons. Intermolecular C–H?O and O–H?O hydrogen bonding of the cadmium(II) complex forms a two-dimensional supramolecular sheet along the bc plane and posses an impressively short intermolecular C(sp3)?O(sp3) contact.  相似文献   

13.
The binuclear metal complex [Cu(μ-exoO2)cyclamCu(bpy)](ClO4)2·H2O (bpy?=?2,2′-bipyridine and (exoO2)cyclam?=?1,4,8,11-tetraazacyclotradecanne-2,3-dione) has been synthesized and characterized by single-crystal X-ray analysis and spectroscopic and magnetic measurements. The structure consists of homobinuclear [Cu(μ-exoO2)cyclamCu(bpy)]2+ cations, a weakly coordinated water molecule and perchlorate ions. In each binuclear unit, Cu1, coordinated by four nitrogen atoms of the macrocyclic organic ligand is connected to Cu2 via the exo-cis oxygen atoms of the macrocyclic ligand with Cu···Cu separations of 5.151?Å; Cu2 assumes square-pyramidal geometry. Magnetic properties measured at 2–300?K show antiferromagnetic exchange between adjacent copper(II) ions.  相似文献   

14.
A two-dimensional bi-layered supramolecular compound [Cu2(C7H8N4O)4](ClO4)2 has been synthesized by the solvothermal method, and characterized via IR and CHN elemental analysis. The single crystal X-ray data of this compound reveal the complex to be dimeric as a result of terminal –NH2 group of the semicarbazone moiety bridging, which is relatively rare. On this bi-copper(I) complex, another remarkably structural feature is that each Cu atom adopts an unsymmetrical T-shaped geometry comprised of three N atoms from three pyridine-3-carbaldehyde semicarbazone ligands. The molecules are linked into a two-dimensional bi-layered framework by intermolecular N–H?···?O hydrogen bonds.  相似文献   

15.
A mixed ligand complex of Cu(II) with 1,10-phenanthroline and succinate has been synthesized from the reaction of hydrated copper nitrate, succinate, and 1,10-phenanthroline. The nature of bonding and the structure of the complex were characterized by elemental analyses, infrared spectrum, TGA/DTA, and X-ray diffraction. The crystal crystallizes in triclinic space group P 1. The complex is polymeric and the geometry around each copper varies from square planar to distorted square pyramidal or octahedral. Each copper coordinates two oxygens of succinate and two nitrogens of 1,10-phenanthroline. The thermal decomposition of the complex has also been studied by TGA and DTA under inert atmosphere.  相似文献   

16.
A nanosized copper(II) supramolecular compound, [Cu(dipic)(H2O)2] n (1) [dipic?=?2,6-pyridinedicarboxylate], has been synthesized by sonochemical method and characterized by elemental analysis, scanning electron microscopy, X-ray powder diffraction, IR spectroscopy, TGA/DTA, and BET surface area studies. The structure of single crystalline 1 developed from nanosized 1 has been determined by X-ray crystallography and further characterized by scanning electron microscopy, TGA/DTA, and BET surface area studies. The XRD studies reveal that nanorod copper(II) supramolecular compound adopts a 3-D supramolecular network owing to extensive hydrogen-bonding and π–π stacking. Solvent effects on size and morphology of nanosized 1 have been studied. Calcination of nanosized 1 at 500°C under air yields CuO nanoparticles.  相似文献   

17.
Three thiophene-2,5-dicarboxylic acid (H2tdc) complexes of copper(II) with 2-aminomethylpyridine (ampy), {[Cu2(μ-tdc)2(ampy)2]·2DMF}n (1), ethylenediamine (en), trans-[Cu(H2O)2(en)2](tdc) (2) and 4-methylimidazole (4-meim), trans-[Cu(H2O)2(4-meim)4](tdc)·4H2O (3) have been synthesized and characterized by spectral (IR, UV–Vis), thermal analyses and X-ray diffraction techniques. In 1, thiophene-2,5-dicarboxylate acts as a bridging bis(bidentate) ligand through four carboxylate oxygen atoms forming a 1-D zigzag polymeric chain, whereas in 2 and 3 the tdc dianion behaves as a counter ion. In all cases, the Cu(II) centers have an octahedral coordination geometry. Three-dimensional frameworks are constructed though hydrogen bonding and/or C–H···π interactions in the three complexes.  相似文献   

18.
A one-dimensional polynuclear copper(II) complex [Cu(μ1,6-dmpzdo)(SCN)2] n (where dmpzdo?=?2,5-dimethylpyrazine-1,4-dioxide) has been synthesized and its crystal structure determined by X-ray crystallography. The coordination geometry of Cu(II) atom is a square plane and each Cu(II) ion is connected by two μ1,6-dmpzdo bridging ligands, leading to the formation of a one-dimensional chain. ESR spectra indicate magnetic coupling between the bridged Cu(II) ions. The fitting of the variable-temperature magnetic susceptibility data (4–300?K) gave 2J?=??68.69?cm?1.  相似文献   

19.
A novel copper(II)-azide complex of [Cu2(DMAP)2(μ-1,1-N3)2(μ-1,3-N3)2]n (DMAP = 4-(dimethylamino)pyridine) has been synthesized and characterized by IR spectra, X-ray diffraction, elemental analysis, and magnetism measurement. The complex reveals a 1D ladder-like chain structure, in which two μ-1,1-N3 and two μ-1,3-N3 bridges form a dimeric unit of [Cu2(DMAP)2(μ-1,1-N3)2(μ-1,3-N3)2] and are then connected to each other from the tail nitrogens of two asymmetric μ-1,3-N3 bridges to generate a chain structure that stacks in the cell to construct the 3D crystal. The Cu atom is five-coordinated by azide anions to form a distorted square-pyramid of CuN5 (τ = 0.2667). Magnetic susceptibility of complex exhibits a ferromagnetic interaction between the copper(II) ions through two kinds of azido-bridges. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号