首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel complexes [Pt(C5H6O2)L2] (IVa, L = PPh3; IVb, L = PMePh2, IVc, L = PMe2Ph) were prepared by the reactions of [Pt(acac)2] with tertiary phosphines either at elevated temperature (when L = PPh3) or at room temperature (L = PMePh2 and PMe2Ph), whereas AsPh3 yielded [Pt(acac)(γ-acac)AsPh3] (Id) by the reaction with [Pt(acac)2] even under rigorous conditions. Complexes IV were characterized on the basis of their IR and NMR spectra, elemental analyses and chemical reactions, and a structure which possesses a chelate type “acetylacetonato” ligand involving π-oxoallyl bonding is proposed.  相似文献   

2.
Reactions of [ReX2(η 2-N2COPh-N′,O)(PPh3)2] with 3-methylbenzonitrile give two iso-structural complexes, [ReX2(N2COPh)(CH3PhCN)(PPh3)2] (X?=?Cl, Br). The crystal and molecular structures of [ReCl2(N2COPh)(CH3PhCN)(PPh3)2] (1) and [ReBr2(N2COPh)(CH3PhCN)(PPh3)2]?·?CH2Cl2 (2) were determined. The electronic structures were examined with density functional theory (DFT). The spin-allowed electronic transitions were calculated with the time-dependent DFT method, and the UV-Vis spectrum has been discussed.  相似文献   

3.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

4.
The complexes [Ir(cod)Ln]PF6(I, L = PPh3, PMePh2; n = 2. L = PMe2Ph; n = 3) react with HX to give [IrHX(cod)L2]PF6 (II, L = PMePh2 or PMe2Ph) or [IrHX2(cod)(PPh3)] (III). The intermediates [IrX(cod)L2] have, in two cases (L = PMePh2, X = I, Br), been directly isolated from the reaction mixtures at 0°C, and are also formed from I with KX (L = PPh3, X = Cl; L = PMePh2, X = Cl, Br, I); these intermediates protonate to give II (L = PMePh2), or an equimolar mixture of III and I (L = PPh3, X = Cl). Surprisingly, I2 reacts with I in MeOH to give III (L = PPh3). The stereochemistries of II and III were determined by < 1H NMR and especially by new methods using 13C NMR spectroscopy. The complexes I exhibit a Lewis acid reactivity pattern.  相似文献   

5.
Reactions of CpRuCl(PPh3)2 with bis(phosphino)amines, X2PN(R)PX2 (1 R=H, X=Ph; 2 R=X=Ph; 3 R=Ph, X2=O2C6H4) give neutral or cationic mononuclear complexes depending on the reaction conditions. Reaction of 1 with CpRuCl(PPh3)2 gives one neutral complex, [CpRu(Cl)(η2-Ph2PN(H)PPh2)] (4) and two cationic complexes, [CpRu(η2-Ph2PN(H)PPh2)(η1-Ph2PN(H)PPh2)]Cl (5) and [CpRu(PPh3)(η2-Ph2PN(H)PPh2)]Cl (6), whereas the reaction of 2 with CpRuCl(PPh3)2 leads only to the isolation of cationic complex, [CpRu(PPh3)(η2-Ph2PN(Ph)PPh2)]Cl (7). The catechol derivative 3, in a similar reaction, affords an interesting mononuclear complex [CpRu(PPh3){η1-(C6H4O2)PN(Ph)P(O2H4C6)}2]Cl (8) containing two monodentate bis(phosphino)amine ligands. The structural elucidation of the complexes was carried out by elemental analyses, IR and NMR spectroscopic data.  相似文献   

6.
Diazomethane converts [cpRu(dppm)(SO2)]PF6 into [cpRu(dppm)(CH2=SO2)]PF6, the first example of a complex containing a side-on coordinated sulfene. This compound is a strong organometallic electrophile as shown by rapid addition reactions with anionic (Cl, Br, CN, SCN) and neutral (PMe3, PPh3, NMe2Ph, MeOH, EtOH) nucleophiles.  相似文献   

7.
Terminal ‘N3—’ ligands in rhenium and technetium nitrido complexes are sufficiently nucleophilic to react with Lewis acids under formation of nitrido‐bridged compounds. The reactivity of the nucleophilic centre and the nature of the formed compounds are strongly dependent on the Lewis acid and the composition of the metal complex used. Air‐stable compounds with Re≡N‐ER3 bridges are formed when ER3 is BR3 (R = H, Cl, Br, Ethyl, Phenyl, C6F5), BCl2Ph, GaCl3, CPh3+, or PPh3. The six‐co‐ordinate rhenium(V) complexes [ReNX2(PMe2Ph)3] (X = Cl, Br), [ReN(X)(Et2dtc)(PMe2Ph)2] (Et2dtc = diethyldithiocarbamate) and [ReN(Et2dtc)2(PMe2Ph)] have been proved to be excellent starting materials for this type of reactions, whereas the five‐co‐ordinate precursors [ReNCl2(PPh3)2], [ReN(Et2dtc)2], [ReN{Ph2P(S)NP(S)Ph2}2] or [ReNCl4] only react with the most reactive Lewis bases of the examples mentioned above such as BCl2Ph or B(C6F5)3. The rhenium‐nitrido bond lengths remain almost unchanged by the adduct formation, whereas a significant decrease of the trans‐influence of the nitrido complexes has been observed as can be seen by a shortening of the corresponding bond lengths or dimerization of five‐co‐ordinate precursors. Electrophilic attack of the Lewis acid to a donor atom of the equatorial co‐ordination sphere of the rhenium complex results in the formation of ‘underco‐ordinate’ metal centres which resemble to di‐, tri or tetrameric units with asymmetric nitrido bridges between each two rhenium atoms. EPR spectroscopy is an excellent tool to reflect the formation of nitrido bridges at the paramagnetic (d1) [ReNX4] core (X = F, Cl, Br, NCS). The spectral parameters derived for the products of reactions of [ReNCl4] with various boron compounds indicate an increase of the covalency of the equatorial Re‐L bonds as a consequence of the formation of a nitrido bridge. The tendency for the formation of nitrido bridges with Lewis acids is significantly lower for technetium compounds compared to their rhenium analogues. Only a few examples with BH3 and BPhCl2 have been established.  相似文献   

8.
The reaction of [Pt2X2(-Cl)2(PR3)2] with NaSpy or NaSepy gave complexes of the type [PtX(Epy)(PR3)]n (X=Cl or Ar; E=S or Se; PR3=PEt3, PMe2Ph, PMePh2 or PPh3; n=1 or 2) which were characterized by elemental analysis and by 1H, 31P{1H}, 195Pt{1H} n.m.r. spectroscopy. When X=Cl a dynamic equilibrium between [Pt2Cl2(-Spy)2(PR3)2] and [PtCl(k-S,N-Spy)(PR3)] species exists in CHCl3 solution. The aryl derivatives, X=Ar, exist exclusively as dimers (n=2) with predominantly SN bridging. The [Pt(Spy)2 (PPh3)2] complex, prepared by reacting [PtCl2 (PPh3)2] with NaSpy, dissociates in CHCl3 to [Pt(k-S,N-Spy) (Spy)(PPh3)] and PPh3 at room temperature.  相似文献   

9.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

10.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

11.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

12.
[Ru(CO)(PPh3)23-O,N3,S-TSC1)] (1), [Ru(Cl)(CO)(PPh3)22-N3,S-TSC2)] (2), and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC3)] (3) have been prepared by reacting [Ru(H)(Cl)(CO)(PPh3)3] with the respective thiosemicarbazones TSC1 (2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone), TSC2 (3-hydroxybenzaldehyde thiosemicarbazone), and TSC3 (3,4-dihydroxybenzaldehyde thiosemicarbazone) in a 1?:?1 M ratio in toluene and all of the complexes have been characterized by UV–vis, FT-IR, and 1H and 31P NMR spectroscopy. The spectroscopic studies showed that TSC1 is coordinated to the central metal as a tridendate ligand coordinating via the azomethine nitrogen (C=N), phenolic oxygen, and sulfur to ruthenium in 1, whereas TSC2 and TSC3 are coordinated to ruthenium as a bidentate ligand through azomethine nitrogen (C=N) and sulfur in 2 and 3. Oxygen sensitivities of 1–3 and [Ru(Cl)(CO)(PPh3)22-N3,S-TSC4)] (4), and antimicrobial activities of 1–3 have been determined.  相似文献   

13.
The reactions of bis(borohydride) complexes [(RN?)Mo(BH4)2(PMe3)2] ( 4 : R=2,6‐Me2C6H3; 5 : R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN?)Mo(H)(SiR′3)(PMe3)3] ( 3 : R=Ar, R′3=H2Ph; 8 : R=Ar′, R′3=H2Ph; 9 : R=Ar, R′3=(OEt)3; 10 : R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN?)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN?)Mo(H)2(SiH2Ph)2(PMe3)2] ( 19 ). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] ( 18 ). This latter species does not undergo the elimination of a Si? O group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN?)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations.  相似文献   

14.
Direct reduction of WCl6 with PMe3 in toluene at 120°C in a sealed tube affords the complexes [WCl4(PMe3)x] (x = 2, 3). [WCl4(PMe3)3] abstracts oxygen from equimolar amounts of water in wet acetone or tetrahydrofuran to give [WOCl2(PMe3)3] in very high yields. This procedure has been successfully applied to the high yield synthesis of other known oxotungsten(IV) complexes, [WOCl2(PR3)3] (PR3 = PMe2Ph and PMePh2). Metathesis reactions of [WOCl2(PMe3)3] with NaX give [WOX2(PMe3)3] (X = NCO, NCS) and [WOX2(PMe3)] (X = Me2NCS2). The synthesis of the trimethylphosphite analogue, [WOCl2(P(OMe)3)3], is also described and the structures of the new complexes assigned on the basis of IR and 1H and 31P NMR spectroscopy.  相似文献   

15.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The keto-functionalised N-pyrrolyl phosphine ligand PPh2NC4H3{C(O)CH3-2} L1 reacts with [MoCl(CO)35-C5R5)] (R=H, Me) to give [MoCl(CO)2(L11P)(η5-C5R5)] (R=H 1a; Me 1b). The phosphine ligands PPh2CH2C(O)Ph (L2) and PPh2CH2C(O)NPh2 (L3) react with [MoCl(CO)35-C5R5)] in an analogous manner to give the compounds [MoCl(CO)2(L-κ1P)(η5-C5R5)] (L=L2, R=H 2a, Me 2b; L=L3, R=H 3a, Me 3b). Compounds 13 react with AgBF4 to give [Mo(CO)2(L-κ2P,O)(η5-C5R5)]BF4 (L=L1, R=H 4a, Me 4b; L=L2, R=H 5a, Me 5b; L=L3, R=H 6a, Me 6b) following displacement of chloride. The X-ray crystal structure of 4a revealed a lengthening of both Mo–P and CO bonds on co-ordination of the keto group. The lability of the co-ordinated keto or amido group has been assessed by addition of a range of phosphines to compounds 46. Compound 4a reacts with PMe3, PMe2Ph and PMePh2 to give [Mo(CO)2(L11P)(L)(η5-C5H5)]BF4 (L=PMe3 7a; PMe2Ph 7b; PMePh2 7c) but does not react with PPh3, 5a reacts with PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L21P)(L)(η5-C5H5)]BF4 (L=PMe2Ph 8b; PMePh2 8c; PPh3 8d), and 6a reacts with PMe3, PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L31P)(L)(η5-C5H5)]BF4 (L=PMe3 10a; PMe2Ph 10b; PMePh2 10c; PPh3 10d). No reaction was observed for the pentamethylcyclopentadienyl compounds 4b6b with PMe3, PMe2Ph, PMePh2 or PPh3. These results are consistent with the displacement of the co-ordinated oxygen atom being influenced by the steric properties of the P,O-ligand, with PPh3 displacing the keto group from L2 but not from the bulkier L1. In the reaction of [Mo(CO)2(L22P,O)(η5-C5H5)]BF4 (5a) with PMe3 the phosphine does not displace the keto group, instead it acts as a base, with the only observed molybdenum-containing product being the enolate compound [Mo(CO)2{PPh2CHC(O)Ph-κ2P,O}(η5-C5H5)] 9. Compound 9 can also be formed from the reaction of 2a with BuLi or NEt3, and a single crystal X-ray analysis has confirmed the enolate structure.  相似文献   

17.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

18.
The reduction of MoCl4(DPPE) (DPPE = PPh2CH2CH2PPh2) with Mg or Na/Hg in the presence of 2 PPhR2 under Ar results in the formation of the new complexes Mo(η6-PhPR2)(PPhR2)(DPPE) when R is Ph (Ia) or Et(II). No η6-PhPR2 complex is obtained when R is Me because this small ligand forms strong MoP σ-bonds; nor is one obtained for R = Cy because of too much steric crowding. The limits for η6-complexation can be quantified in terms of cone angle sums.Complex Ia is very similar to Mo(η6-PhPMePh)(PMePh2)3 (IIIa) in that both react at similar rates with a variety of small ligands L = PMePh2, PMe2Ph, PMe3, P(OMe)3, N2, CO, CNBut and H2 via dissociation of a labile σ-bonded ligand. Several other less crowded η6-arylphosphinemolybdenum complexes including II do not have labile ligands at 25°C. The new complexes Mo(η6-PhPPh2)(L)(DPPE) have been characterized by 31P and 1H NMR, IR and gas uptake measurements, Ia has a higher affinity for H2 than IIIa possibly because Mo(η6-PhPPh2)(H)2(DPPE) adopts a non-fluxional trans-configuration. The 31P chemical shift of the σ-bonded ligand in 8 derivatives of Ia and 12 of IIIa correlate with the sum of the cone angles of the three σ-bonded ligands in each complex.  相似文献   

19.
Complexes cis-[ReOX2(msa)(PPh3)]?[X?=?Cl(1), I(2)] were prepared from trans-[ReOCl3(PPh3)2] or trans-[ReOI2(OEt)(PPh3)2] with 2-(1-iminoethyl)phenol (Hmsa) in acetonitrile. An X-ray crystallographic study shows that the bonding distances and angles in 1 and 2 are nearly identical, and that the two halides in each complex are coordinated cis to each other in the equatorial plane cis to the oxo group. Rhenium(V) complexes with cis diiodides are rare. All bonding distances and angles are in the expected ranges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号