首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new compounds, (H2en)3(H2enMe)4(H3O){CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}?·?6H2O (1) and (H2enMe)4{CuICuII[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}?·?3H2O (2), were hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction analysis. Crystallographic analysis reveals that 1 is constructed from cluster anions {CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}15?, protonated organic amines, and water molecules. Each cluster is bridged through hydrogen bonds to form a 3-D supermolecular structure. For 2, {CuI[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}11? are connected by CuII cations to form an infinite chain. The formation of 1 and 2 reveals that organoamines influence the structures of the crystals.  相似文献   

2.
Reduced molybdophosphate-based supramolecular compounds, such as (4,4′-H2bipy)[Co(H2O)2]2[Co(H2PO4)2(HPO4)4(PO4)2(MoO2)12(OH)6] · 17H2O (1), [Co(2,2′-bipy)2(H2O)]4[Co(H2O)2][Co(HPO4)6(PO4)2(MoO2)12(OH)6] · 2H2O (2), and [Co(2,2′-bipy)2(H2O)]4[Co(H2PO4)(H2O)2]2[Co(HPO4)6(PO4)2(MoO2)12(OH)6] · 8H2O (3) (4,4′-bipy=4,4′-bipyridine, 2,2′-bipy=2,2′-bipyridine), have been synthesized under hydrothermal conditions and characterized. Compound 1 exhibits a three-dimensional supramolecular twofold interpenetrating architecture built up of one-dimensional [P4Mo6]-based infinite covalent chains and free 4,4′-bipy molecules. Compound 2 also shows a three-dimensional supramolecular network constructed from one-dimensional covalent [P4Mo6]-based chains. Unlike compounds 1 and 2, compound 3 exhibits an interesting three-dimensional ‘honeycomb-like’ supramolecular network constructed by the stacking of [Co(2,2′-bipy)2(H2O)] units with one-dimensional channels, in which the [P4Mo6]-based polyoxometalate chains are located. The magnetic properties of compounds 2 and 3 are reported. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Four new [P4Mo6] cluster-based extended structures containing cadmium complexes, [Cd3(4,4′-Hbpy)2(4,4′-bpy)2(H2O)8][Cd(H2PO4)2(HPO4)4(PO4)2(MoO2)12(OH)6]·7H2O 1, (4,4′-Hbpy)2[Cd(4,4′-bpy)3(H2O)3][Cd(4,4′-bpy)(H2O)]2[Cd(H2PO4)2(HPO4)4 (PO4)2(MoO2)12(OH)6]·H2O 2, [Cd4(phen)2(H2O)4][Cd(phen)(H2O)]2[Cd(HPO4)4 (HPO4)4(MoO2)12(OH)6]·5H2O 3 and [Cd4(2,2′-bpy)2(H2O)4][Cd(2,2′-bpy)(H2O)]2 [Cd(HPO4)4(HPO4)4(MoO2)12(OH)6]·3H2O 4 (4,4′-bpy=4,4′-bpyridine, phen=1,10-phenanthroline, 2,2′-bpy=2,2′-bpyridine), have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The structure of compound 1 is constructed from the Cd[P4Mo6]2 dimers linked by [Cd3(4,4′-Hbpy)2(4,4′-bpy)2(H2O)8] subunits to generate a plane layer. Compound 2 consists of the positive 2D sheets that constructed from Cd[P4Mo6]2 dimers linked by [Cd(4,4′-bpy)(H2O)] complexes, then the 2D sheets are further linked up together to form a 3D supramolecular framework via extensive hydrogen-bonding interactions among the [P4Mo6] clusters, free 4,4′-bpy molecules, dissociated [Cd(4,4′-bpy)3(H2O)3]2+ complexes and water molecules. Compounds 3 and 4 show new 2D layered structure, with Cd[P4Mo6]2 building blocks connected by tetra-nuclear [Cd4{(phen)2/(2,2′-bpy)2}(H2O)4] clusters and [Cd(phen/2,2′-bpy)(H2O)] complexes. The fluorescent activities of compounds 3 and 4 are reported.  相似文献   

4.
Two new materials built from reduced molybdenum (V) phosphates as building blocks and zinc coordination complexes as linkers, (H3O)2[Zn(2,2′-bpy)]4[Zn(H2O)]2[Zn(HPO4)2 (PO4)6(MoO2)12(OH)6] · 6H2O (2,2′-bpy=2,2′-bpyridine) 1 and [Zn(phen)(H2O)2]2[Zn(phen) (H2O)]2[Zn(H2O)]2[Zn(HPO4)4 (PO4)4(MoO2)12 (OH)6] · 7H2O (phen=1,10-phenanthroline) 2, have been synthesized and characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction. Compound 1 is a new 3-D structure which constructed from Zn[P4Mo6]2 dimers bonded together with [Zn(2,2′-bpy)] coordination complexes and [Zn(H2O)] fragments. In compound 2, the Zn[P4Mo6]2 dimeric units are linked by [Zn(phen)(H2O)] coordination complexes and [Zn(H2O)] fragments to form a new 2-D framework. The fluorescent activities of compounds 1 and 2 were reported. The crystal data for the two compounds are the following: 1, triclinic, P−1, a=13.036(3) ?, b=13.765(3) ?, c=14.459(3) ?, , Z=1; 2, triclinic, P−1, a=12.708(3) ?, b=14.016(3) ?, c=14.646(3) ?, , Z=1.Dedicated to Professor Michael T. Pope on the occasion of his retirement.  相似文献   

5.
Two new members of Mo(V) phosphates were synthesized by hydrothermal methods. (enH2)(enH)[NaMo12O24(OH)6(HPO4)2(H2PO4)6]·(en)4·20H2O(1)(en=H2 NCH2CH2NH2)[HAD-H2]2[HAD-H]2[Zn3Mo12O24(OH)6(PO4)2(HPO4)6]·6H2O (2) (HAD=H2N(CH2)6NH2). Compound 1 crystallized in the space group P2(1)/n, a=15.93120(10) Å, b=15.8946(2) Å, c=17.0665(2) Å, V=4316.02(8), =92.9060(10)°, Z=2. Compound 2 crystallized in the space group P(–1) with a=12.3726(3) Å, b=14.1948(3) Å, c=14.2310(4) Å, =72.7100(10), =65.0230(10), =69.5600(10)°, Z=2089.70(9) Å3, and Z=1. The structure of 1 consists of sandwich-shaped cluster anion [Na{MoV 6O12(OH)3(HPO4)(H2PO4)3}2]3– ({Na(Mo V 6 ) 2 }) held together via intermolecular hydrogen-bonding contacts. For the compound 2, the sandwich-shaped clusters Zn[Mo6O12(OH)3(PO4)(HPO4)3]2 ({Zn(Mo V 6 ) 2} are linked by tetrahedrally-coordinated zinc into layers. Organic cations ([H3N(CH2)6NH3]2+ and [H3N(CH2)6NH2]+) are filled in the spaces between lamellas. The layers are held together by a hydrogen-bonded network, which involves the terminal phosphate P-OH groups, as well as organic cations and several waters of solvation.  相似文献   

6.
Three 1-D reduced molybdenum(V) phosphates, [Ni(OH)2][Na2(H2O)3]2{Ni[(MoO2)6(OH)3(HPO4)3(PO4)]2}?·?2C6H14N2?·?2H3O?·?5H2O (1), [Ni(H2O)2][K(H2O)5]2{Ni[(MoO2)6(OH)3(HPO4)3(PO4)]2}?·?2C6H14N2?·?2H3O?·?4H2O (2), and [Cu(H2O)2][Na(H2O)5]2{Cu[(MoO2)6(OH)3(HPO4)3(PO4)]2}?·?2C6H14N2?·?2H3O?·?4H2O (3), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The crystallographic analysis reveals that 1 is based on {Ni[Mo6O12(OH)3(HPO4)3(PO4)]2} clusters connected through {[Ni(OH)2][Na2(H2O)3]2} pentanuclear mixed-metal cluster units to yield unusual 1-D chains along the c-axis, which further form 3-D supramolecular networks via hydrogen-bonding. Compounds 2 and 3 are heterogeneous isostructural compounds. Both are built from M[Mo6P4]2 (M?=?Ni or Cu) blocks as the structural motif combined with [MO4(H2O)2] (M?=?Ni or Cu) octahedra to form 1-D chains, where M[Mo6P4]2 (M?=?Ni or Cu) is bonded by [M′(H2O)5] (M′?=?K or Na). Furthermore, bulk carbon paste electrode modified with 1 (1-CPE) displays good electrocatalytic activity toward reduction of nitrite or bromate.  相似文献   

7.
Single crystals of [Zn(NH3)4]3[Mo4Te4(CN)12] (I) and [Cd(NH3)4]3[W4Te4(CN)12] (II) were obtained by applying solutions of K7[Mo4Te4(CN)12] · 11H2O and K6[W4Te4(CN)12] · 5H2O in aqueous ammonia over solutions of ZnCl2 and Cd(NO3)2 in glycerol and were characterized by X-ray diffraction analysis. The IR spectra and thermal properties of compounds I and II were examined.  相似文献   

8.
Two new ferrous molybdophosphates, (H2enMe)7FeII[Mo12V(HPO4)2(PO4)6(OH)6O24]·7H2O 1 and (H2enMe)6FeII[Mo12V(HPO4)4(PO4)4(OH)6O24]·4H2O 2 (enMe = 1,2-propanediamine), have been synthesized from an identical starting mixture through hydrothermal reactions using temperature as the only independent variable, and thoroughly characterized by IR, TG, single crystal X-ray diffraction and cyclic voltammetry. The structures of both 1 and 2 are built from the building blocks of the formula, {FeII[Mo6P4O31]2}, consisting of a network of MO6 (M = Fe, Mo) octahedra and PO4 tetrahedra linked through their vertices as anions, and protonated 1,2-propanediamine as cations, respectively. The most important aspect is that the non-hydrogen atomic ratio of Mo, Fe, P, O in the anions of 1 and 2 is the same, but the protonation of the PO4 groups is different in 1 and 2. Less protonation of the PO4 groups in 1 obtained at high temperature results in the anion carrying more charges and gives rise to more H2enMe cations per [FeII(P8Mo12V)] unit compared with that in 2 obtained at low temperature, and as a consequence, different interpenetrating hydrogen-bonded network structures are formed in the two different compounds in terms of packing efficiency and the system energy minimization.  相似文献   

9.
Visible-light-driven photocatalytic Cr(VI) reduction is a promising pathway to moderate environmental pollution, in which the development of photocatalysts is pivotal. Herein, three hourglass-type phosphomolybdate-based hybrids with the formula of: (H2bpe)3[Zn(H2PO4)][Zn(bpe)(H2O)2]H{Zn[P4Mo6O31H6]2} ⋅ 6H2O ( 1 ) Na6[H2bz]2[ZnNa4(H2O)5]{Zn [P4Mo6O31H3]2} ⋅ 2H2O ( 2 ) and (H2mbpy) {[Zn(mbpy)(H2O)]2[Zn(H2O)]2}{Zn[P4Mo6O31H6]2} ⋅ 10H2O ( 3 ) (bpe=trans-1,2-bi(4-pyridyl)-ethylene; bz=4,4′-diaminobiphenyl; mbpy=4,4’-dimethyl-2,2’bipyridine) were synthesized under the guidance of the functional organic moiety modification strategy. Structural analysis showed that hybrids 1 – 3 have similar 2D layer-like spatial arrangements constructed by {Zn[P4Mo6]2} clusters and organic components with different conjugated degree. With excellent redox properties and wide visible-light absorption capacities, hybrids 1 – 3 display favourable photocatalytic activity for Cr(VI) reduction with 79%, 70% and 64% reduction rates, which are superior to that of only inorganic {Zn[P4Mo6]2} itself (21%). The investigation of organic components on photocatalytic performance of hybrids 1 – 3 suggested that the organic counter cations (bpe, bz and mbpy) can effectively affect the visible-light absorption, as well as the recombination of photogenerated carriers stemmed from {Zn[P4Mo6]2} clusters, further promoting their photocatalytic performances towards Cr(VI) reduction. This work provides an experimental basis for the design of functionalized photocatalysts via the modification of organic species.  相似文献   

10.
Three new molybdophosphates, [Co(dien)2]·(H3dien)6·{[CoMo12O24(OH)6(HPO4)2(PO4)6][Co(Hdien)]2[CoMo12O24(OH)6(PO4)8]}·(dien)·4H3O·5H2O (1), (H3dien)4[MMo12O24(OH)6(HPO4)4(PO4)4]·10H2O [M=Co for (2), Ni for (3); dien=diethylenetriamine], have been synthesized by employing hydrothermal method and characterized by single crystal X-ray diffraction. Compound 1 is built up of Co[P4Mo6]2 units as the structural motif covalently linked by [Co(Hdien)] complex subunits to yield an unusual 1-D chain. Compounds 2 and 3 are isomorphic and both display covalent discrete M[P4Mo6]2 cluster structures which are linked by the hydrogen bonds to form 3-D supramolecular networks. Both 1 and 2 display antiferromagnetic interaction and these three compounds all exhibit intensive photoluminescence.  相似文献   

11.
A new compound, [Co(H2O)6][{Co2(H2O)6}{Co(H2PO4)2}{(PO4)6(HPO4)18(Mo16O32)Co16(H2O)18}] · 23H2O (1), has been prepared under mild hydrothermal conditions and structurally characterized by elemental analyses, i.r. spectrum, XPS spectrum and single-crystal X-ray diffraction. Compound (1) consists of [(Mo16O32)Co16- (H2O)18(PO4)6(HPO4)18] wheel-shape clusters as the structural motif, which are covalently linked by [Co2(H2O)6] and [Co(H2PO4)2] fragments to form a two-dimensional layer framework. It is the first time that such wheels have been linked by both mononuclear and dimeric CoII octahedra. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
By employing different organic amines as structure-directing agents, two new distinct 3D porous inorganic frameworks based on molybdenum(V) phosphates and MnII, (H2en)2{[Mn(H2O)]2[MnMo12O24(OH)6(H2PO4)2(HPO4)4(PO4)2]}·7H2O (en = ethylenediamine) (1) and (H3dien)2{[Mn(H3O)2][Mn3Mo12O24(OH)6(HPO4)2(PO4)6]}·5H2O (dien = diethylenetriamine) (2), have been hydrothermally synthesized, and characterized by routine physical methods. In compound 1, MnII all adopt octahedral coordination mode and each sandwich cluster Mn[Mo6P4O31]2 (abbreviated as Mn[Mo6P4]2) acts as an octa-dentate ligand linking eight MnII, which result in a 3D inorganic (4, 8)-connected framework with the (46)(410·612·86) topology. Compound 2 shows a 3D (4, 10)-connected framework with the (31·44·61)(34·49·57·617·74·84) topology, in which MnII ions exhibit both tetrahedral and octahedral coordination modes, and each Mn[Mo6P4]2 links ten MnII. Interestingly, there exist channels along the a and b axes in 1, while along the a and c axes in 2. The differences between the two compounds should be ascribed to the distinctions of the organic amines. Primary de-/rehydration behaviors and electrochemistry properties have also been studied for the two compounds.  相似文献   

13.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

14.
Three novel coordination polymers K5[MnMo6Se8(CN)6] · 8H2O (1), (Me4N)4[{Mn(H2O)2}1.5Mo6Se8(CN)6] · 4H2O (2), and K3[{Mn2(H2O)4}Mo6Se8(CN)6] · 7H2O (3) have been synthesized by layering of a methanol solution of [Mn(salen)]CH3COO (salen–N,N′-bis(salicylidene)ethylenediamine) on an aqueous solution of K7[Mo6Se8(CN)6] · 8H2O. The compounds have been characterized by single-crystal X-ray diffraction analysis. All structures are based on negatively charged porous polymer frameworks where CN groups of [Mo6Se8(CN)6]7− cluster complexes are coordinated to Mn2+ cations. Cavities in the frameworks are filled by additional cations and solvate water molecules.  相似文献   

15.
郭鸿旭  王庆华  陈晨  梁敏  陈铃 《中国化学》2008,26(4):640-644
水热合成并通过红外、热重、单晶X-射线衍射表征了一个新颖镍配位阳离子修饰的还原型钼磷酸盐,Ni[Mo6O12(OH)3(PO4)(HPO4)3]2][Ni(H2O)2][Ni(H2O)(bipy)2]4·5H2O。单晶X-射线衍射研究表明,两个{Mo6P4}簇单元通过一个镍离子连接形成一个Ni[Mo6P4]2二聚结构单元,其进一步和其他的镍配位阳离子连接成钼磷酸盐一维链状结构。在H2O2存在下的液-固体系中,使用该化合物催化氧化苯甲醛的探针反应结果表明,该化合物具有较高的催化氧化活性。  相似文献   

16.
The crystal structure of the title compound, (C4H15N3)2[Mo5O15(HPO4)2]·4H2O, is made up of [Mo5O15(HPO4)2]4− clusters, iminodiethylenediammonium cations and solvent water mol­ecules. The [Mo5O15(HPO4)2]4− cluster, with approximate C2 symmetry, can be considered as a ring formed by five distorted edge‐ and corner‐sharing MoO6 octa­hedra, capped on both poles by a hydro­phosphate tetra­hedron. There exist N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds between the organic ammonium groups and the clusters, with inter­atomic N⋯O distances ranging from 2.675 (3) to 2.999 (3) Å, and C⋯O distances ranging from 3.139 (5) to 3.460 (5) Å.  相似文献   

17.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

18.
Three new coordination compounds [{Zn(H2O)2} {Zn(H2O)4} Re4Te4(CN)12] (1), [Zn(en)2(NH3)2][{Zn(en)(NH3)2} Re4Te4(CN)12]·H2O (2), and [{Zn2(dien)3} Re4Te4(CN)12]· ·6H2O (3) (dien is diethylenetriamine) were prepared by reactions of aqueous solutions of the tetrahedral cluster rhenium tellurocyanide complex K4[Re4Te4(CN)12]· 5H2O with zinc dichloride in the presence of ammonia, ethylenediamine, and diethylenetriamine, respectively. Complex 1 has a three-dimensional structure with two types of the Zn atoms; complex 2 is ionic with the polymeric chain anion; complex 3 has a molecular structure. The structures of complexes 1–3 were determined by single-crystal X-ray diffraction analysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 718–721, April, 2006.  相似文献   

19.
Two new inorganic–organic hybrid cobalt phosphomolybdates (Hdien)2[Co(dien)]2[Co(dien)(H2O)]2[CoMo12O24(HPO4)2(H2PO4)2(PO4)4(OH)6]?···?5H2O (1) and (H2dien)2[Co(dien)]2[Co(H2O)2]2[CoMo12O24(HPO4)4(PO4)4(OH)6]?···?7H2O (2) (dien?=?diethylenetriamine), involving molybdenum in the V oxidation state and covalently bonded transition metal complexes, have been prepared under mild hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, TG analyses, and single-crystal X-ray diffraction. Compound 1 exhibits a one-dimensional (1D) chain framework, in which dien molecules adopt two kinds of coordination modes. Compound 2 shows a two-dimensional (2D) layer framework with three types of unusual tunnels. To the best of our knowledge, it is the first time [Co(dien)] units are directly incorporated into 1D and 2D skeletons of reduced molybdenum phosphates. The electrochemical properties of the two compounds were studied via the method of bulk-modified carbon paste electrodes. Furthermore, the magnetic properties of compound 2 are reported.  相似文献   

20.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号