首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclohexylcarbamodithioic acid has been synthesized by the reaction of cyclohexylamine with carbon disulfide at room temperature. Its complexes have been synthesized by the reaction of cyclohexylcarbamodithioic acid with organotin(IV) chlorides in 1?:?1/1?:?2 molar ratio. The ligand and complexes have been characterized by elemental analysis, infrared (IR), and multinuclear (1H, 13C, and 119Sn) NMR spectroscopy. Elemental data show good agreement between calculated and found values of carbon, hydrogen, nitrogen, and sulfur. IR data show that the ligand is bidentate and complexes exhibit a five-coordinate geometry in the solid state, which is also confirmed by semi-empirical studies. NMR data show that the complexes exhibit tetrahedral geometry in solution state. The ligand and its complexes were screened for their in vitro mutagenic, antimicrobial, MIC, antioxidant activities, and cytotoxicity. Biological screening data demonstrate that complexes show significant activity against various bacterial and fungal strains and are good antioxidants. The cytotoxicity data show positive lethality for complexes as compared to ligand and can play a very significant role in drug development.  相似文献   

2.
Three transition metal and six organotin(IV) complexes have been synthesized by treating potassium o-methyl carbonodithioate with ZnCl2/CdCl2/HgCl2 and R2SnCl2/R3SnCl under stirring. The complexes were characterized by IR, 1H, and 13C NMR spectroscopies. IR results show that the ligand is bidentate in 1–3 while monodentate in 4–9, which is also confirmed by semi-empirical study. NMR data reveal four-coordinate geometry in solution. HOMO–LUMO study shows that 7 and 9 are thermodynamically unstable. The enzyme inhibition study shows that 1 is a potent inhibitor of ALP, EC 3.1.3.1, resulting in very slow rate of formation and breakdown of enzyme–substrate complex. UV/visible spectroscopy was used to assess the mode of interaction and binding of the complexes with DNA which shows that 9 exhibits higher binding constant when compared to 6. In protein kinase inhibition assay, 1 was active, while antifungal activity shows that organotin(IV) complexes are more active than transition metal complexes.  相似文献   

3.
New organotin(IV) carboxylates, R2SnL2 (R=n-Bu: 1), R2Sn(Cl)L (R=n-Bu: 2), and R3SnL (R=Me: 3; n-Bu: 4; Ph: 5) have been synthesized by stirring 5-chloro-2-hydroxybenzoic acid HL with KOH and R2SnCl2 (R=n-Bu)/R3SnCl (R=Me, n-Bu, Ph) in methanol at room temperature. The complexes along with ligand have been characterized by FTIR, (1H, 13C) NMR, EI-MS, and single-crystal XRD crystallography. FTIR data indicated bidentate coordination of carboxylate. NMR data suggested six- or five-coordinate geometry of organotin(IV) carboxylates. Single-crystal XRD of 1 demonstrated skew-trapezoidal geometry around the tin center, with the basal plane occupied by four oxygens and the two butyl groups lying in distorted axial position. Complexes 1, 2, and 5 exhibited interaction with SS-DNA (salmon sperm) and suggests intercalating mode of binding. The complexes displayed significant antimicrobial activities against bacterial and fungal strains as compared to free ligand. The hemolytic activity of the complexes was lower compared to Triton-X 100 (positive control, 100% lysis) and higher than phosphate-buffered saline (negative control, 0% lysis). Complex 4 was the most potent inhibitor of bacterial/fungal growth.  相似文献   

4.
The synthesis, spectroscopy, and antitumor behavior of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid are described. The spectroscopic data indicate 1 : 2 and 1 : 1 metal to ligand stoichiometry in case of di- and trioganotin(IV) compounds and hypervalency of Sn(IV) in trigonal bipyramidal and octahedral modes. Mass spectrometric and elemental analysis data support the solid and solution spectroscopic results. The complexes have been evaluated in vitro against crown gall tumor and bio-activity screenings showed in vitro biological potential. The nature of covalent attachments (methyl, ethyl, n-butyl, phenyl, and n-octyl) of Sn(IV) played a decisive role for bioactivity. All the compounds have been studied in solution by NMR (1H, 13C) and also in solid state using FTIR, mass spectrometry, and by X-ray crystallography. The molecular structure of Et2Sn(IV) and Me3Sn(IV) derivatives confirm the behavior of di- and tri-organotin(IV) compounds in solid state. Mono-organotin derivatives are octahedral both in solid and solution.  相似文献   

5.
Four organotin(IV) complexes of dihydrobis(2-mercaptothiazolinyl)borate were synthesized and characterized by elemental analysis and spectroscopic techniques (IR, 1H-NMR, 13C-NMR, 11B-NMR, and 119Sn-NMR). All the compounds were screened against bacterial, fungal, and cyanobacterial strains. Among the complexes, triorganotin(IV) complexes show better inhibition growth as compared to diorganotin(IV) complexes.  相似文献   

6.
2-(N-naphthylamido)benzoic acid was synthesized by the reaction of phthalic anhydride with naphthylamine in glacial acetic acid at room temperature. Complexes 19 were synthesized under reflux in good yield with general formula R4? n SnL n (R = Me, n-Bu, Ph, n-Oct, Bz and n = 2, 3), which were studied by microanalysis, IR, NMR (1H, 13C, 119Sn), and mass spectrometry. Cytotoxicity of the synthesized compounds was checked against Brine-shrimp larvae. In vitro activities against some Gram-positive and Gram-negative bacteria and fungi were also determined. Antimicrobial activities show that species with tetrahedral geometry in solution are more toxic.  相似文献   

7.
New mono-, di- and tri-organotin(IV) derivatives containing the neutral bis(2-pyridylthio)methane ligand, [(pyS)2CH2] and tris(2-pyridylthio)methane ligand, [(pyS)3CH] have been synthesized from reaction with SnRnCl4−n (R = Me, nBu, Ph and Cy, n = 1-3) acceptors. Mono-nuclear adducts of the type {[(pyS)2CH2]RnSnCl4−n} and {[(pyS)3CH]RnSnCl4−n} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data. The 1H and 119Sn NMR and ESI-MS data suggest for the triorganotin(IV) derivatives a complete dissociation of the compounds in solution. The mono- and di-organotin(IV) derivatives show a greater stability in solution, and their spectroscopic data are in accordance with the existence of six-coordinated RSnCl3N2 or R2SnCl2N2 species.  相似文献   

8.
Six new organotin(IV) complexes were synthesized by direct reaction of RSnCl3 (R?=?Me, Bu and Ph) or R2SnCl2 (R?=?Me, Bu and Ph) and 2-hydroxyacetophenone thiocarbohydrazone [H2APTC] under purified nitrogen in the presence of base in 1?:?2?:?1 molar ratio (metal: base: ligand). Complexes 2–7 have been characterized by elemental analyses, molar conductivity, UV-Visible, IR and 1H NMR spectral studies. Complexes 27 are non-electrolytes. The molecular structure of [Me2Sn(APTC)]?·?(C2H5OH) (5) has been determined by X-ray diffraction analysis. The thiocarbohydrazone ligand (1) and 27 have been tested for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi and Enterococci aeruginosa.  相似文献   

9.
10.
New organotin(IV) derivatives containing the anionic ligand bis(3,5-dimethylpyrazolyl)dithioacetate [L2CS2]? have been synthesized by reaction of SnR n X4? n (R?=?Me, Ph, n Bu or Cy; n?=?1–3) acceptors and Li[L2CS2]. Mononuclear complexes of the type [L2CS2]R n SnCl4? n ?1} have been obtained and fully characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 119Sn) spectroscopy, conductivity measurements and electrospray ionization mass spectrometry (ESI-MS) in solution. ESI-MS spectra of methanol solutions of diorganotin derivatives, recorded with fragmentor potentials of 0, 50, 100 and 150?V, show the occurrence at 150?V of peaks attributable to the loss of the CS2 group from the ligands and the formation of stable tetraorganodistannoxane species.  相似文献   

11.
A heteroscorpionate ligand, potassium hydrobis(benzoato)(salicylaldehyde)borate (KL), has been synthesized. This was converted into organotin complexes R2SnL2 and R3SnL complexes by mixing and stirring with a methanolic solution/suspension of organotin chloride. The ligand and its complexes were characterized by elemental analyses and spectral studies (IR, 1H NMR, 13C NMR, ESI mass spectra and Thermo gravimetric analysis (TGA)). Antibacterial and antifungal studies of these compounds were evaluated by the disc diffusion method at variable concentration against three species of bacteria (Staphylococcus aureus, Klebsiella pneumonia and Bacillius subtillis) and two species of fungi (Asperjillius fiavus and Candida albicans). It was found that triorganotin derivatives (R3SnL) of the ligand were more effective as compared with diorganotin derivatives (R2SnL2). The organotin complexes of borates were tested for their algicidal activity on the cyanobacterial strains Aulosira fertilissma, Anabaena species, Anabaena variabilis and Nostoc muscorum and showed high to moderate toxicity towards the above species. The ligand and its complexes were also tested for its pH effect on soil in vitro for a duration of more than one month and it was found that they are able to kill pests without damaging the soil quality. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Five new organotin(IV) complexes, [(R3Sn)(O2C15H13)] n (R?=?Me: 1; nBu: 2), [RSn(O)(O2C15H13)]6 (R?=?Ph: 3), [(R2Sn)2(O2C15H13)2(μ 3-O)]2 (R?=?Me: 4), and [(R2Sn)(O2C15H13)2] (R?=?nBu: 5), have been prepared by the reaction of 2,3-diphenylpropionic acid and the corresponding organotin chloride with sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X-ray crystallography. The structural analyses reveal that 1 and 2 are 1-D infinite polymeric chains with Sn in syn–anti conformation. Complex 3 has a drum structure with six Sn centers. Complex 4 has a supramolecular chain-like ladder through weak intermolecular Sn?···?O interactions. Complex 5 is a monomer, connected into a 1-D polymer through intermolecular C–H?···?O interactions. Complexes 1 and 5 crystallize in the orthorhombic space groups P212121 and P21212, which are chiral space groups.  相似文献   

13.
Reaction of 2-(2-pyridylmethylthio)benzoic acid (1) with R2SnO (R = Et or nBu) in a 1:1 molar ratio gives the dimeric compounds {[(2-PyCH2SC6H4CO2)SnR2]2O}2. A similar reaction of 2-(4-pyridylmethylthio)benzoic acid (2) with Et2SnO yields an analogous result. However, treatment of 2 with nBu2SnO in a 1:1 molar ratio only gives the diorganotin dicarboxylate (4-PyCH2SC6H4CO2)2Sn(nBu)2. X-ray crystal structure analyses indicate that the pyridyl nitrogen atoms do not coordinate to the tin atoms in the dimer, whilst in the diorganotin dicarboxylate the tin atom has a seven-coordinate distorted pentagonal-bipyramidal geometry, and this compound forms a linkage coordination polymer through the interactions of the pyridyl nitrogen atoms with the adjacent tin atoms. In addition, treatment of 1 or 2 with (Ph3Sn)2O in a 2:1 molar ratio affords triphenyltin carboxylates, in which the tin atoms also show different coordination environments. In the solid state, triphenyltin 2-(2-pyridylmethylthio)benzoate is a monomer and the pyridyl nitrogen atom does not participate in coordination to the tin atom either, while the interactions between the pyridyl nitrogen atoms and the adjacent tin atoms link triphenyltin 2-(4-pyridylmethylthio)benzoate into a coordination polymer. Preliminary in vitro tests for fungicidal activity show that all these compounds display good activity to Physolospora piricola in a low concentration. Moreover, the triphenyltin carboxylates show a higher inhibition percentage than the diorganotin carboxylates.  相似文献   

14.
Four new complexes, [Ph3Sn(isopropylACDA)] (1), [Ph2SnCl(isopropylACDA)] (2), [Ph3Sn(secbutylACDA)] (3), and [Ph2SnCl(secbutylACDA)] (4), have been prepared from reaction between N-alkylated 2-amino-1-cyclopentene-1-carbodithioic acids (ACDA) with Ph2SnCl2 and Ph3SnCl in 1:1 ratio. All complexes are characterized by FTIR, multinuclear NMR (1H, 13C, and 119Sn) and mass spectrometry. In all complexes, the S–H proton has been removed and coordination takes place through the carbodithioate moiety. The 119Sn NMR data are consistent with five coordination of tin atom in solution. Complexes 2, 3, and 4 have also been confirmed by single X-ray crystallography. All three crystals are triclinic with space group P − 1. In complexes 2 and 4, the geometry around tin atom is distorted trigonal bipyramidal while in 3 the geometry is in between distorted tetrahedral and trigonal bipyramid. In all three structures, ligands are asymmetrically coordinated to tin atom. In addition, crystal structures are further stabilized by N–H···S hydrogen bonding.  相似文献   

15.
Twenty-two n-butyltin(IV) and t-butyltin(IV) complexes of ligands containing an -OH (-CO) group or -OH and -COOH groups and an aromatic {N} donor atom were prepared by metathetical reactions. On the basis of the FT-IR and Mössbauer spectroscopic data, molecular structures were assigned to these compounds. The binding sites of the ligands were identified by means of FT-IR spectroscopic measurements, and it was found that in most cases the organotin(IV) moiety reacts with the phenolic form of these ligands. In the complexes with -OH and -COOH functions, the -COOH group is coordinated to the organotin(IV) centres in a monodentate manner. The 119Sn Mössbauer and the FT-IR studies support the formation of trigonal bipyramidal (TBP) and octahedral (Oh) molecular structures. Furthermore, X-ray diffraction analysis has been performed on the n-butyltin(IV)- and t-butyltin(IV)-8-quinol 8-olato-O,N single crystals. The hexacoordinated tin centres exhibit cis-octahedral geometry in both complexes.  相似文献   

16.
New organotin(IV) complexes of the general formula R3Sn(L) (where R=Me, n-Bu and HL=L-proline; R=Me, Ph and HL=trans-hydroxy-L-proline and L-glutamine) and R2Sn(L)2 (where R=n-Bu, Ph and HL=L-proline; R=Ph, HL=trans-hydroxy-L-proline) have been synthesized by the reaction of RnSnCl(4-n) (where n=2 or 3) with sodium salt of the amino acid (HL). n-Bu2Sn(Pro)2 was synthesized by the reaction of n-Bu2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn M?ssbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear (1H, 13C and 119Sn) NMR spectral studies. The 119Sn M?ssbauer and IR studies indicate that L-proline and trans-hydroxy-L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy-L-proline, in which the carboxylate group acts as bidentate group. L-glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD50 values are >1000 mg kg-1.  相似文献   

17.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

18.
Several novel organotin(IV) complexes with formula SnCl2(CH3)2(X)2, X = C6H5C(O)NHP(O)(NC4H8)2 (1), C6H5C(O)NHP(O)(NC5H10)2 (2), C6H5C(O)NHP(O)[N(CH3)(C6H11)]2 (3), C6H5C(O)NHP(O)[NH-C(CH3)3]2 (4) were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures have been determined for each of the four compounds. Compound 1 exists in the form of two symmetrically independent molecules in the crystalline state due to differences in their similar torsion angles. In all of the four structures there are intramolecular -Sn-Cl?H-N- hydrogen bonds, in addition to weak C-H?O and C-H?Cl hydrogen bonds. Both 1H and 13C NMR spectra show the coupling of 119/117Sn nuclei with methyl proton and carbon atoms. The δ(31P) of these complexes are in upfields with respect to their corresponding reported ligands. The spectroscopic and structural properties of these complexes were compared with those corresponding ligands.  相似文献   

19.
Reaction of organotin(IV) chloride(s) with 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone, [HL] (1) yielded [MeSnCl2(L)] (2), [BuSnCl2(L)] (3), [Me2SnCl(L)] (4), and [Ph2SnCl(L)] (5). The ligand (1) and its organotin(IV) complexes have been characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of 5 was also determined by X-ray diffraction. There are two independent molecules in the asymmetric unit and the central tin(IV) atom is six-coordinate in distorted octahedral geometry. The ligand (1) and complexes were screened for their in vitro antibacterial activities. The cytotoxic activities of 15 were tested against A2780 and A2780/Cp8 cancer cell lines. The compounds have better antibacterial activities than the free ligand; 25 are more potent cytotoxic agents than 1, while the diphenyltin(IV) 5 is more active with IC50 values of 0.05 and 0.54?µmol?L?1 against A2780 and A2780/Cp8 cell lines, respectively.  相似文献   

20.
A series of new organotin(IV) derivatives; Me3SnL (1), Bu3SnL (2), Ph3SnL (3), Me2SnClL (4), Bu2SnClL (5), Ph2SnClL (6), Et2SnClL (7) and Et2SnL2 (8) where L = N-(2,3-dimethylphenyl)piperazine-1-carbodithioate have been synthesized and characterized by various analytical techniques. Among these techniques, 1H and 13C NMR were carried out to asses solution structures whereas the solid state structures were confirmed by FT-IR and X-ray single crystal analysis (3, 5 and 8). Crystal structure of complex (3) and (5) showed distorted trigonal bipyramidal geometry and square pyramidal geometry, respectively. The inclination of the structure 5 towards square-pyramidal may be due to the presence of the Sn-Cl?HN-piperazine hydrogen bonds between the adjacent molecules. A supramolecular structure is shown by compound (8), with central tin atom exists in a distorted octahedral geometry. The antibacterial results indicated the profound activity of the compounds against various strains of bacteria. In addition to this, the triorganotin(IV) derivatives were found more active than diorganotin(IV) compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号