首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To observe anion impact on structural diversity of coordination architectures, three 1-D Ag(I) complexes with distinct features have been prepared, {[Ag(bpbib)2(NO3)]·C3NH9O)}n (1), [Ag2(bpbib)2·(BF4)2]n (2), and [Ag2(bpbib)2·(ClO4)2]n (3), by the reactions of 4,4′-bis((2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)biphenyl (bpbib) with Ag(I) salts. Complex 1 is a 1-D helical chain, whereas 2 and 3 bear ligand-unsupported Ag(I)···Ag(I) interaction-directed 1-D structural motif, with synergetic working of flexible organic linker and anions. All complexes exhibit strong triplet state emission at cryogenic temperatures, which profits from the reduction of nonradiative transitions.  相似文献   

2.
Two new coordination polymers, [Pb(bpdc)] n (1) and [Co(bpdc)(phen)] n (2) [H2bpdc?=?benzophenone-2,4′-dicarboxylic acid, phen?=?1,10-phenanthroline], have been synthesized and structurally characterized. Hydrogen bonding and π?···?π stacking extend 1 and 2 into 3-D supramolecular architectures, where 1 exhibits a 3-D framework with 1-D hairpin-like helicates based on Pb–O covalent bonds and 2 displays a 3-D network with 1-D zipper-like chains based on Co–O and Co–N covalent bonds. The FT-IR spectra, PXRD and TG analyses are discussed for 1 and 2. Fluorescence spectra and luminescent lifetime are studied for 1.  相似文献   

3.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

4.
Two new cobalt(II) complexes, [Co(L3)2]·CH3OH·CH3COCH3 (1) (HL3 = 1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime) and Co(L4)2 (2) (HL4 = 1-(2-{[(E)-3,5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), have been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 and HL2. HL1, HL2, and their corresponding Co(II) complexes were characterized by IR, 1H NMR spectra, as well as by elemental analysis and UV–Vis spectroscopy, respectively. The crystal structures of the complexes have been determined by single-crystal X-ray diffraction. 1 and 2 display that extensive hydrogen bonds and C–X···π bonding interactions construct the 1-D infinite chain [Co(L3)2]·CH3OH·CH3COCH3 and Co(L4)2 into 2-D supramolecular frameworks. The electrochemical properties of two Co(II) complexes were also investigated by cyclic voltammetry.  相似文献   

5.
Three CdX2-containing (X = Cl, Br) compounds [CdBr2(Him)2] n (Him = imidazole) (1), [CdCl2(2,2′-bipy)] n (2,2′-bipy = 2,2′-bipyridine) (2), and [CdCl2(phen)] (phen = phenanthroline) (3) have been synthesized through hydrothermal technique. Compound 1 adopts 1-D coordination chain, which is connected to form a 3-D supramolecular network by inter-chain N–H ··· Br and C–H ··· Br hydrogen bonds. Compound 2 also adopts 1-D coordination chain, which is connected to form 3-D supramolecular network by intra- and inter-chain C–H ··· Cl hydrogen bonds; 3 is discrete, linked to form 2-D supramolecular sheets by intra- and inter-molecular C–H ··· Cl hydrogen bonds. The different volume and coordination ability of organic ligands result in the different coordination structure and supramolecular synthons. All these compounds exhibit strong fluorescence emissions at room temperature.  相似文献   

6.
Two new Cu(II) complexes, [Cu(L1)2] (1) and [Cu(L2)2] (2) (HL1 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-methyl oxime; HL2 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-ethyl oxime), have been synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analyses show that complexes 1 and 2 have similar structures, consisting of one Cu(II) atom and two L units. In both complexes, the Cu(II) atom, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime ligands. Moreover, both complexes form an infinite three-dimensional supramolecular structure involving intermolecular C–H···Br hydrogen bonds and π···π stacking interactions between the metal chelate rings and aromatic rings. Substituent effects in the two complexes are discussed.  相似文献   

7.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

8.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

9.
The reactions of dicarboxylic acids, such as 4,4-oxybis(benzoic acid) [H2oba] and 2-propyl-4,5-imidazoledicarboxylate [H3pimdc], under hydrothermal conditions in the presence of an appropriate zinc salt yield two mononuclear complexes, which are characterized by elemental analysis, infrared spectrum, electrochemical analysis, thermal analysis, and X-ray crystal diffraction. Complex 1, [Zn(Hoba)2(4,4′-bpy)2], forms a 2-D supramolecular layer like rhombus via hydrogen bonds (O–H?···?N). Complex 2, [Zn(H2pimdc)2(2,2′-bpy)]?·?H2O, forms a zig-zag chain via multiple hydrogen bonds and C–H?···?π interactions. The moderate hydrogen-bond interactions in 1 and 2 play an important role for structural stability. The electrochemical analyses of 1 and 2 reveal electron transfer of 1 is reversible and 2 is quasi-reversible.  相似文献   

10.
A series of Cu(II) carboxylate complexes (carboxylate?=?2-fluorobenzoic acid (2-HFBA) or 4-fluorobenzoic acid (4-HFBA)) containing either one chelating 1,10-phenanthroline (phen) or 2,2′-bipyridine (bipy) have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, and thermal analyses. In [Cu(bipy)(H2O)(2-FBA)2] (1), [Cu(bipy)(H2O)(4-FBA)2] (3), and [Cu(phen)(H2O)(2-FBA)2] (4), Cu is five-coordinate in a square pyramidal geometry and four-coordinate in [Cu(phen)(2-FBA)2] (2). The four complexes are extended into 1-D chains through hydrogen-bonding and π?···?π interactions in 1 and 4, only hydrogen-bonding in 2, and π?···?π interactions in 3. These contacts lead to aggregation and supramolecular self-assembly.  相似文献   

11.
Two new zinc(II) and cadmium(II) complexes, [Zn(PDT)2(NCS)2] (1) and [Cd((PDT)2I1.6(H2O)0.4(OH)0.4] · 0.4H2O (2) (“PDT” is the abbreviation of 3-(2-pyridyl)-5, 6-diphenyl-1,2,4-triazine), have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, and studied by X-ray crystallography. Zinc(II) in 1 is six coordinate ZnN6. 2 is a co-crystal with cadmium(II) being 60% six-coordinated with a CdN4I2 environment and 40% seven-coordinated with a CdN4O2I environment. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular S ··· π, C–H ··· π, C–H ··· I, and π ··· π interactions.  相似文献   

12.
Three new phenolate oxygen bridged transition metal complexes [Zn3(HL1)33‐CH3O)]·(ClO4)2(H2O)3 ( 1 ), [Ni2(HL1)21,1‐N3)(o‐vanillin)]·H2O ( 2 ), [Ni3(HL2)2(PhCOO)2(PhCOOH)2(EtOH)2] ( 3 ) have been synthesized by metal ions and potentially multidentate Schiff base ligands (H2L1 = 2‐((1‐hydroxy‐2‐methylpropan‐2‐ylimino) methyl)‐6‐methoxyphenol; H3L2 = (E)‐1‐((2‐hydroxy‐3‐methoxy‐benzylidene)amino)ethane‐1,2‐diol). All the three complexes 1 , 2 , and 3 have been characterized by elemental analysis, FT‐IR spectroscopy, and single‐crystal X‐ray diffraction studies. Crystal structures reveal that complex 1 is a trinuclear incomplete cubane‐like zinc cluster whereas complex 2 is a dinuclear nickel complex bridged by azide, and compound 3 is a trinuclear nickel complex. The luminescent property for complex 1 and magnetic behaviors for complexes 2 and 3 have been investigated.  相似文献   

13.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

14.
Rehman  F.  Zafar  M. N.  Yousuf  S.  Nazar  M. F.  Mughal  E. U.  Malik  A.  Sumrra  S. H.  Zafar  M. N.  Rafique  H. 《Russian Journal of General Chemistry》2019,89(12):2516-2521

Zn(II) complexes of N-(quinolin-8-yl)picolinamide (HL1) (1) and N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2L2) (2) have been synthesized by deprotonation of the ligands and characterized by IR, NMR, and Single crystal X-ray crystallography. The mononuclear [Zn(L1)2] (3) and homodinuclear [Zn2(L2)2] (4) complexes are characterized by distorted octahedral geometries stabilized by hydrogen bonding and weak π···π interaction. The complexes demonstrate intense fluorescence bands in comparison with their corresponding ligands with well-distinguished intensity. The complexes act as efficient catalysts in various transesterification reactions. Among those, the best results have been achieved with complex 3 in conversion of 4-nitrophenylacetate into methyl acetate within 3 h.

  相似文献   

15.
The multidentate Schiff-base ligand N′-(1-(pyrazin-2-yl)ethylidene)isonicotinohydrazide (HL) has been prepared. Reaction with zinc, copper, and silver nitrate afford three complexes, [Zn(HL′)2](NO3)2·3H2O (1), {[Cu2(L)2(NO3)(H2O)2]·NO3}n (2) and {[Ag2(L)2]·3H2O}n (3). These complexes have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. In 1, HL is a neutral tridentate ligand, whereas in 2 and 3, HL is a deprotonated tetradentate ligand. The hydrogen bonding interactions between NO3? and the host framework result in various supramolecular polymeric structures: a 2-D layer for 1 and 3-D network for 2 and 3. The antibacterial activities of these complexes have been investigated and the results indicate that 3 showed good antibacterial activities.  相似文献   

16.
Two new nickel complexes, [Ni(L1)2]?·?2(CH3OH) (1) and [Ni(L2)2]?·?2(CH3OH) (2), where HL1 is 4-chloro-2-((2-hydroxy-ethylimino)methyl)phenol and HL2 is 4-fluoro-2-((2-hydroxy-ethylimino)methyl)phenol, have been synthesized and characterized by single-crystal X-ray diffraction and UV-Vis absorption spectra. The coordination polyhedron of nickel(II) in each complex can be described as distorted octahedral. The interactions between the complexes and calf thymus (CT)-DNA/DNA were investigated by UV-Vis spectra and agarose gel electrophoresis. The results show that the complex transforms supercoiled to nicked form and exhibits effective DNA cleavage activity via hydrolytic cleavage mechanism.  相似文献   

17.
Three diorganotin(IV) series and triorganotin(IV) complexes, [(C6H11)2Sn]4(L1)2O2(OH)2 (1), (C6H11)3Sn(HL2) (2), and (C6H11)3SnL3 (3) (where HL1 is 2-(4-isopropyl benzoyl) benzoic acid, H2L2 is phthalic acid and HL3 is 2-benzoyl benzoic acid), were synthesized and their crystal structures were determined. There are four crystallographically unique Sn centers in the structure of 1, which consists of a Sn4O2(OH)2 ladder unit, and the ladder consists of four tins held together by two µ3-oxygens and two µ2-oxygens. The supermolecular motif of 1 is a 2-D structure linked by O–H ··· O hydrogen bonds. The asymmetric unit of 2 contains two crystallographically independent monomers. The supramolecular architecture of 2 is a 2-D layer structure linked by face-to-face π–π interactions between phenyl rings of adjacent L2 anions. The structure of 3 contains one tricyclohexyltin cation and one L3 anion. The Sn ··· O interactions lead the whole structure to a supramolecular chain. Elemental analysis, infrared, and 1H NMR of 13 were investigated and discussed.  相似文献   

18.
Five N-heterocyclic carboxylate-based coordination complexes, [Co(L1)2(H2O)2]·2H2O (1), [Cd(L1)2(H2O)2]·2H2O (2), [Co(L2)(H2O)3] (3), [Ni(L2)(H2O)3] (4), and [Cu2(L2)2(H2O)2] (5), have been synthesized and characterized by elemental analysis, IR spectroscopy, Powder X-ray diffraction, thermogravimetric analyses, and single-crystal X-ray crystallography, where HL1 is 2-((5-amino-1H-1,2,4-triazol-3-yl)thio)acetic acid and H2L2 is 2-((5-amino-1-(carboxymethyl)-1H-1,2,4-triazol-3-yl)thio)acetic acid. In these complexes, the hydrogen bonds (H-bonds) play an important role in their packing structures. Complex 1 has nine H-bonds showing a 3-D sqc38 topology. Complex 2 has 17 H-bonds exhibiting a 3-D hxl network. Complexes 3 and 4 are isomorphic, both of which possess ten H-bonds to present a 3-D btc topology. Complex 5 with eight H-bonds forms a 2-D sq1 structure. In addition, complex 3 catalyzes the decolorization of methyl orange. Meanwhile, 1, 3, and 5 show certain anticancer activities to inhibit the growth of HepG2 cells.  相似文献   

19.
Four cobalt(II) coordination polymers, {[Co(HO-BDC)(bbp)]}n (1), {[Co(HO-BDC)(bmbp)2]·(H2O)2}n (2), {[Co(HO-BDC)(bbb)]}n (3), and {[Co2(HO-BDC)2(bmbb)2]·(H2O)3}n (4), where HO-H2BDC?=?5-hydroxyisophthalic acid, bbp = 1,3-bis(benzimidazol-1-yl)propane, bmbp = 1,3-bis(2-methyl-benzimidazol-1-yl)propane, bbb = 1,4-bis(benzimidazol-1-yl)butane, and bmbb = 1,4-bis(2-methyl-benzimidazol-1-yl)butane, have been synthesized and characterized by elemental analyses, IR spectra, single-crystal X-ray diffraction, thermogravimetric analyses, and fluorescence properties. Compounds 1 and 3 are 4-connected 2-D networks with (44·62) topology. Compound 2 is a 1-D chain, while 4 features a 1-D ladder. These 1-D and 2-D complexes are further connected by hydrogen bonds to form 3-D supramolecular architectures. Complexes 1–4 showed very strong yellow luminescence emission.  相似文献   

20.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号