首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M=CoII, NiII, CuII or ZnII); [Fe(BdH)3](NO3)3; [M(BdH)3][Ni(dto)2] (M=CoII, NiII or ZnII; dto=dithiooxalate); [Cu(BdH)2][Ni(dto)2] and [Fe(BdH)3]2[Ni(dto)2]3 have been prepared and characterized by chemical analysis, conductance measurements, electronic and i.r. spectral studies and cyclic voltammetry.A mononuclear octahedral configuration is proposed for all cationic complexes, excepting [Cu(BdH)2][Ni(dto)2, which is probably a dithiooxalate bridged dimer.  相似文献   

2.
Compounds of the type M3[Fe(CN)6]2XH2O (M = Co(II), Ni(II), Cu(II), and Zn(II)) were prepared and magnetic properties of their powders were investigated by means of EPR spectra, Mössbauer effect and magnetic susceptibility measurements. The temperature dependence of the magnetization for the complexes Co3[Fe(CN)5]2- 10H2O, Ni3[Fe(CN)6]2-10H2O and Cu3[Fe(CN)6]2-4H2O revealed that below the critical temperatures 15, 22 and 20 K respectively, these complexes have zero-field magnetization. The magnetic hysteresis at 10 K for Co(II), Ni(II) and Cu(II) complexes was observed. Mössbauer spectra at 4.2 K for the compounds are discussed.  相似文献   

3.
Abstract

The hydrated metal nitrates (M(NO3)3.6H2O, M[dbnd]Co, Ni, Cu, Zn and Cd) have been crystallised from water in the presence of 18-crown-6 and their structures determined by X-ray crystallography. In the case of copper, a pseudo four-coordinate square planar complex resides in an extended six-coordinate octahedral array which is further bound in a single-stranded one-dimensional hydrogen bonded polymeric mode. For M[dbnd]Co,Ni,Zn and Cd isomorphous complexes are isolated where the octahedral [M(H2O)5(NO3)+ cation resides in a two-dimensional polymeric network through hydrogen bonds between the water ligands and either the crown ether oxygens or unbound nitrate ions or water molecules.  相似文献   

4.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

5.
Three new cyano-bridged complexes 1 [Ni(tn)2Ni(CN)4] (tn?=?1,3-diaminopropane), 2 [CuII(dipn)NiII(CN)4], and 3 [Cu(dipn)]6[Co(CN)6]4?·?4H2O (dipn?=?dipropylenetriamine) have been assembled by the templates [Ni(CN)4]2? and [Co(CN)6]3?. 1 consists of a one-dimensional linear chain–Ni(tn)2–NC–Ni(CN)2–CN–Ni(tn)2? in which the Ni(II) centers are linked by two CN groups. One 1-D zigzag chain of 2 is formed with–Ni(2)–C–N–Cu(1)–N–C–linkages. A 2D structure of 3 is formed by an alternate array of [Co(CN)6]3? and [Co][Cu6] units. For 1, there is an overall weak antiferromagnetic interaction between Ni(II) ions through the–NC–Ni–CN–bridges of the diamagnetic [Ni(CN)4]2? anions. 2 exhibits a weak antiferromagnetic exchange interaction between copper(II) ions mediated by [Ni(CN)4]2? diamagnetic bridges. Complex 3 exhibits a weak ferromagnetic interaction between nearest CuII and CuII atoms through–NC–Co–CN–bridges.  相似文献   

6.
New Mannich bases bis(thiosemicarbazide methyl) phosphinic acid H3L1 and bis(1-phenylsemicarbazide methyl) phosphinic acid H3L2 were synthesized from condensation of phosphinic acid and formaldehyde with thiosemicarbazide and 1-phenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(L n )Cl2], K3[FeII(L1)Cl2], K3[MnII(L2)Cl2], and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II), and Fe(II) complexes, square planar for Co(II), Ni(II), and Cu(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes. Complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M : L) as (1 : 1).  相似文献   

7.
The new Mannich bases bis(1,4-diphenylthiosemicarbazide methyl) phosphinic acid H3L1 and bis(1,4-diphenylsemicarbazide methyl) phosphinic acid H3L2 were synthesised from the condensation of phosphinic acid, formaldehyde with 1,4-diphenyl thiosemicarbazide and 1,4-diphenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formulae K2[CrIII(L n )Cl2], K3[MnII(L n )Cl2] and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Hg(II); n = 1, 2), are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Co(II), Ni(II) and Cu(II) complexes and tetrahedral for the Zn(II) and Hg(II) complexes.  相似文献   

8.
The new complexes K2[Ni(Hheo)2], K2[Cu(Hheo)2]·H2O, K2[Ni(Hhpo)2]·H2O, K2[M(Hhpo)2]·0.5H2O (M = Cu, Pd) and K2[Cu2(hpo)2·0.5H2O, where H3heo = N-(2-hydroxyethyl)oxamide and H3hpo = N-(3-hydroxypropyl)oxamide, have been prepared. Several synthetic routes were investigated and the complexes were characterized by analyses, conductivity measurements, thermogravimetry, magnetic susceptibility and spectroscopy (i.r. and far i.r., diffuse reflectance u.v.). Monomeric square planar structures are found for the [M(Hheo)2]2− and [M(Hhpo)2]2− complex anions, while the hpo3− Cu(II) complex appears to be a square planar dimer. The doubly deprotonated Hheo2− and Hhpo2− ions exhibit a bidentate N(secondary amide), N′(tertiary amide)-coordination with the OH-group remaining uncoordinated, while the triply deprotonated hpo3− ion behaves as a bridging N(secondary amide), N′(tertiary amide), O(deprotonated) ligand, while two Cu(II) centres are bridged by two alkoxide-O atoms. The vibrational analysis of the dehydrated complexes is carried out, using NH/ND, OH/OD, 58Ni/62Ni and 63Cu/65Cu substitutions.  相似文献   

9.
The Schiff base furfural-histidine with Co(II), Ni(II), Cu(II), and Zn(II) in solution gives M(AB), M(AB)B, or M(AB)2. The Schiff base is tetradentate in M(AB)2 and M(AB)B and tridentate in M(AB)2; [M(AB)2] · 2H2O (M = Co, Ni and Zn) and [Cu(AB)]NO3 were synthesized and characterized by elemental analysis, molecular weight determination, conductance, IR, UV–Vis, and CV. The electronic spectral measurements indicate that M(AB)2 (M = Co(II) and Ni(II)) are octahedral and Cu(AB) is square planar geometry. The donor groups in the complexes have been identified by IR. The complexes undergo irreversible one step, two-electron reduction. Antibacterial activity of the complexes was screened for Escherichia coli and Staphylococcus aureus. Cu(II) complex was found to be more active than the Co(II), Ni(II), and Zn(II) complexes.  相似文献   

10.
The reactions of diaminomaleonitrile H2NC(CN)=C(CN)NH2 (1) with the nine-nuclear carboxylate nickel(II) complex Ni9(HOOCCMe3)44-OH)3n-OOCCMe3)12 (under an inert atmosphere or in air) and with K2[PtX4] (in air) afforded the bis-chelate mononuclear complexes M[HNC(CN)C(CN)NH]2 (M=Ni (2) and Pt (3), respectively). The structural features of compounds 1, 2, and 3, which were determined by X-ray diffraction analysis, are discussed.  相似文献   

11.

Ligand bridged polymeric complexes of the type [M(apainh)(H2O)X] where, M=Mn(II), Co(II), Ni(II), Cu(II), and Zn(II); X=Cl2 or SO4; apainh=acetone p‐amino acetophenone isonicotinoyl hydrazone have been synthesized and characterized. The complexes are stable solids, insoluble in common organic solvents and are non‐electrolytes. Magnetic moments and electronic spectral studies suggest a spin‐free octahedral geometry for all Mn(II), Co(II), Ni(II), and Cu(II) complexes. IR spectra show tridentate nature of the ligand bonding through two >C?N and a >C?O groups. X‐ray powder diffraction parameters for some of the complexes correspond to orthorhombic and tetragonal crystal lattices. Thermal studies (TGA and DTA) of [Mn(apainh)(H2O)SO4] complex show multi‐step decomposition pattern of both an endothermic and exothermic nature. ESR data of Cu(II) chloride complex in solid state show an axial spectra, whereas, Cu(II) sulfate complex is isotropic in nature. The complexes show a significant antifungal activity against a number of pathogenic fungal species and antibacterial activity against Pseudomonas sp. and Clostridium sp. The metal complexes are more active than the ligand.  相似文献   

12.
Metal(II) complexes of N-(thiophene-2-carboxamido)salicylaldimine (H2TCS) of types M(H2TCS)2Cl2 [M = Ni, Cu and Zn], M(HTCS)Cl [M = Co, Ni and Cu], M(HTCS)2 [M = Mn, Fe, Co, Ni, Cu and Zn], M(TCS)·xH2O [M = Mn, Co and Ni, x = 2; M = Cu, x = 0], Ni(TCS)py2 and Cu(TCS)py have been prepared. Elemental analyses, molar conductance, magnetic moment, electronic, IR and ESR spectral studies have been used to characterize these complexes. The different modes of chelation of the ligand and the stereochemistry of the complexes are discussed.  相似文献   

13.
Summary Magnetic susceptibilities of the biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M = CoII, NiII, CuII or ZnII), [Fe(BdH)3](NO3)3, [M(BdH)3](Ni(dto)2] (M = CoII, NiII or ZnII; dto = dithiooxalate), [(BdH)2Cu(dto)Ni(dto)] and [Fe(BdH)3]2[Ni(dto)2]3 have been studied in the 4.2–295 K range. ZnII complexes are diamagnetic, and complexes of NiII, CuII and FeIII obey the Curie-Weiss law. The CoII complexes behave anomalously and the results are interpreted in terms of a high spinlow spin equilibrium.  相似文献   

14.
3d-Metal nitroprusside complexes with 4-phenylthiosemicarbazide of the composition [ML2][Fe(CN)5NO] and [CoL3]2[Fe(CN)5NO]3(M = Ni, Cu, Zn; L = 4-phenylthiosemicarbazide) are synthesized and their structures and physicochemical properties are studied by IR and diffuse reflection spectroscopy and DTA.  相似文献   

15.
The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtsc-H) (SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR,1H and13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield <g> values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

16.
A new series of copper(II) mononuclear and copper(II)–metal(II) binuclear complexes [(H2L)Cu] ? H2O, [CuLM] ? nH2O, and [Cu(H2L)M(OAc)2] ? nH2O, n = 1–2, M = Co(II), Ni(II), Cu(II), or Zn(II), and L is the anion of dipyridylglyoxal bis(2-hydroxybenzoyl hydrazone), H4L, were synthesized and characterized. Elemental analyses, molar conductivities, and FT-IR spectra support the formulation of these complexes. IR data suggest that H4L is dibasic tetradentate in [(H2L)Cu] ? H2O and [Cu(H2L)M(OAc)2] ? nH2O but tetrabasic hexadentate in [CuLM] ? nH2O (n = 1–2). Thermal studies indicate that waters are of crystallization and the complexes are thermally stable to 347–402°C depending upon the nature of the complex. Magnetic moment values indicate magnetic exchange interaction between Cu(II) and M(II) centers in binuclear complexes. The electronic spectral data show that d–d transitions of CuN2O2 in the mononuclear complex are blue shifted in binuclear complexes in the sequences: Cu–Cu > Cu–Ni > Cu–Co > Cu–Zn, suggesting that the binuclear complexes [CuLM] ? nH2O are more planar than the mononuclear complex. The structures of complexes were optimized through molecular mechanics applying MM +force field coupled with molecular dynamics simulation. [(H2L)Cu] ? nH2O, [CuLM] ? nH2O, and the free ligand were screened for antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligand is inactive against all studied bacteria. The screening data showed that [CuLCu] ? H2O > [(H2L)Cu] ? H2O > [CuLZn] ? H2O > [CuLNi] ? 2H2O ≈ [CuLCo] ? H2O in order of biological activity. The data are discussed in terms of their compositions and structures.  相似文献   

17.

A heterometallic assembly, [Mn(salen)]2[Ni(CN)4 ]·1/2H2O (where salen=N, N'-ethylene-bis(salicylideneiminato)-dianion), has been prepared from the reaction of [Mn(salen)H2O]ClO4 ·H2O with K2 [Ni(CN)4 ]·H2O in methanol/water. The compound crystallizes in the tetragonal space group P 4/ncc with the cell dimensions of a =14.604(2) Å, c =16.949(3) Å, and Z=4. The compound assumes a two-dimensional distorted square network structure, formed from Ni―CN―Mn(salen)―NC―Ni linkages with dimensions of Ni―C = 1.867(7)Å, Mn―N - 2.312(6) Å, Mn―N―C - 163.8(6)° Ni―C―N = 178.4(6)°. The two metal atoms Ni(II) and MN(III) have square and slightly distorted octahedral arrangements, respectively. Magnetic susceptibility measurements indicate the presence of an intramolecular antiferro-magnetic interaction and gives a Mn―Mn exchange integral of ?3.2cm?1.  相似文献   

18.
A series of octahedral complexes, [M(EDDA)(H2O)2] · H2O (where, M+2 = Co(II), Cu(II), Ni(II) and Zn(II); EDDA, ethylenediamine-N,N′-diacetate), was prepared and studied by means of thermogravimetry (TG) and differential thermal analysis (DTA). Their compositions were investigated by elemental analysis in order to ensure their purity and structural elucidation was based on spectral and magnetic properties. Thermal decomposition of these distorted octahedral complexes, [Ni(EDDA)(H2O)2], [Co(EDDA)(H2O)2] · H2O, [Cu(EDDA)(H2O)2] · H2O and [Zn(EDDA)(H2O)2] · H2O came of in one, two, three and four steps, respectively, upon heating to 800 °C, with the loss of organic and inorganic fragments. Ligand decomposed in three steps. The thermal degradation of all the complexes in static air atmosphere started at temperatures lower than those observed for the free ligand degradation (Ni-complex being the only exception). The composition of intermediates formed during degradation was confirmed by microanalysis and IR spectroscopy. The residues corresponded to metal oxide except for Ni(II) and Zn(II) complexes. It was found that thermal stability of the complexes increased in the following sequence:
\textCu(II) ~ \textCo(II) < \textZn(II) < \textNi(II) {\text{Cu(II)}} \sim {\text{Co(II)}} < {\text{Zn(II)}} < {\text{Ni(II)}}  相似文献   

19.
Summary 2,6-Diacetylpyridinesalicylaldazine (H2daps) forms complexes [Ni(H2daps)ClH2O]Cl, [M(H2daps)Cl2H2O] (M = Mn, Co, Cu or Zn) and [M(daps)(H2O)2] (M = Mn, Co, Ni, Cu or Zn) which have been characterized by elemental analyses, physicochemical methods, spectroscopy and X-ray powder diffraction.  相似文献   

20.
Tris- and bis-ligand complexes of nickel(II) with S-benzyldithiocarbazate (SBDTC) having the general formulae Ni(SBDTC)3X2·H2O (X = Cl, Br and NO3) and Ni(SBDTC)2X2 (X = Cl and NCS), respectively, were synthesized and characterized by electronic and IR spectroscopy and magnetic measurements. The ligand acts as a bidentate sulphur-nitrogen chelating agent. Both the tris- and bis-ligand cationic nickel(II) complexes are high-spin with magnetic moments of ca. 3.10 B.M. On the basis of magnetic and spectral evidence octahedral structures are assigned to these complexes.Under alkaline conditions complexes of the deprotonated ligand having the formulae M(SBDTCA)2[M = Ni(II) and Zn(II); SBDTCA = anion of SBDTC] were isolated. The nickel(II) complex is square-planar.The Schiff base
CH=N-NHCSS2C6H5(NNSH)forms intensely coloured crystalline complexes with nickel(II) and copper(II) having the general formula M(NNS)X [M = Ni(II) and Cu(II); X = Cl, Br or NO3 and NNS is the anion of NNSH]. The nickel(II) complexes are diamagnetic. The magnetic behaviour of the Cu(NNS)X (X = Cl and Br) complexes over the temperature range 320-93°K obeys the Curie-Weiss law. The variable-temperature magnetic data coupled with IR and electronic spectral evidence support square-planar stereochemistries for the copper(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号