首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the Schiff base ligands H2L1–H2L3 and their CuII, CoII, NiII, FeIII RuIII and VOIV complexes have been prepared and characterized by spectroscopic and analytical techniques. All the complexes are mononuclear. Keto-enol tautomeric forms of the ligands have been investigated in polar and apolar solvents. The ligands favor the keto-form in the C7H8 and C6H14. The C–C coupling reaction of the 2,6-di-t-butylphenol has been investigated by the CoII and CuII complexes. Thermal properties of the complexes have been assessed using thermal techniques and similar properties were found. In the FeIII and RuIII complexes, firstly, the coordinated water molecule is lost from the complex; in the second step, the chloride ion leaves the molecule in the 300–350 °C temperature range. Finally, the complexes decompose to the appropriate metal oxide at the higher temperature ranges. The electrochemical properties of the complexes have been studied in the two different solvents (DMF and CH3CN).  相似文献   

2.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

3.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

4.

Two novel asymmetrical Schiff-base ligands, H2L1 and H2L2, were prepared by reacting two half-unit Schiff-base compounds with 2-methyl-7-formyl-8-hydroxyquinoline. The two half-unit Schiff-base compounds were initially prepared by condensing dimedone with either ethylenediamine or p-phenylenediamine, respectively. Both ligands are dibasic and contain two sets of NO coordinating sites. Twelve metal complexes were obtained by reacting both ligands with Cu(II), Ni(II), Co(II), Mn(II), Fe(III), VO(IV) cations. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis, ESR and mass spectra, also magnetic moments of the complexes were determined. Visible spectra of the complexes indicated distorted octahedral geometries around the metal cations. ESR spectra indicated mononuclear and dinuclear structures of the complexes of ligands H2L1 and H2L2, respectively. Magnetic moments of the complexes were rather low compared with those expected for octahedral geometries and indicated polymeric linkage of the metal complex molecules within their crystal lattices. The insolubility of the metal complexes in most organic solvents support the polymeric structures.  相似文献   

5.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

6.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

7.
Substitution inertcis-diaqua CrIII complexes: cis-[(Lx−)CrIII(H2O)2](3−x)+ derived from N-donor ligands (Lx−) viz., bipyridine and 1,10-phenanthroline (x = 0) and N,O-donor ligands viz., nitrilotriacetate and anthranilate N,N-diacetate (x = 3) titrate as diprotic acids in aqueous solution and enhance the acidity of otherwise weakly acidic boric acid (H3BO3) producing mononuclear and binuclear mixed ligand CrIII-borate complexes: [(L)Cr(H2BO4)]x− and [(L)Cr(BO4)Cr(L)](1−2x)+ respectively through coordination of the H2O and/or OH ligands, cis-coordinated in the CrIII-complexes on the electron deficient BIII-atom in H3BO3 with release of protons. Deprotonation of the parent CrIII-complexes and their reactions with H3BO3 have been investigated by potentiometric method in aqueous solution,I = 0.1 mol dm−3 (NaNO3) at 25 ±0.1°C. The equilibrium constants have been evaluated by computerized methods and the tentative stoichiometry of the reactions have been worked out on the basis of the speciation curves  相似文献   

8.
Abstract

α-Hydroxyiminophosphonic acid derivatives are widely known not only as intermediates in the synthesis of the important aminophosphonic acids,1,2 but also as phosphorylating agents,3 potential metalloenzyme inhibitors,4 and as compounds having fungicidal activity.5 In this work the scope of these compounds has been extended considerably by the synthesis of a number of novel dialkyl derivatives. Novel lanthanide (LaIII, PrIII, NdIII, GdIII and DyIII) and transition metal (CoII and NiIII) complexes of dialkyl α-hydroxyiminophosphonates (RO)2P(O)C(R')N(OH) where R = Et. Pri and R′ = Me, Et have been prepared and the NMR shift properties of the PrIII complex (R = Et; R′ = Et) indicate the potential of these compounds as NMR shift reagents for the analysis of geometric isomers.6,7 X-ray crystal structure analysis of [Ni(L1)2C12] (L1: R = Et; R′ = Et) shows a distorted cis octahedral coordination at the nickel atom giving two symmetry related diethyl-(E)-α-hydroxyiminopropanephosphonate ligands and two chlorine donors, and those of [Pr(L2)3Cl3] and [Nd(L2)2(NO3)3(H2O)] (L2: R = Pri; R′ = Et) show nine-coordination geometries with asymmetric bidentate and monodentate L2 bonding respectively. Thus the metal complexes show unusual coordination ambivalence, changing from symmetrically bidentate to asymmetrically bidentate and then to monodentate bonding modes, to accommodate the different steric requirements of the coordinating anions in facilitating neutral complex formation.  相似文献   

9.
The reaction of a series of tripodal ligands, H3L1,2 and L3-6, with [M(PPh3)2Cl2] (M = Ru, Os) affords a family of coordination cage compounds of the type [MIIIL1,2] (1-4) or [MIIL3-6](BPh4)2 (5-12). The Schiff base ligands (H3L1, L3, L5) have been synthesized by condensation of tris(2-aminoethyl)amine with salicylaldehyde, pyridine-2-aldehyde and 1-methyl-2-imidazolecarboxaldehyde. These ligands were further reduced and subsequently methylated to form the new ligands (H3L2, L4, L6). Single crystal X-ray diffraction studies of 1 and 2 show that the tripodal ligand wraps around the metal center as a hexadentate ligand to form a cage. All the synthesized compounds have been thoroughly characterized by ESI-MS, FT-IR, UV-Vis and NMR spectroscopic methods. To the best of our knowledge, this is the first ever report of osmium complexes with tris(2-aminoethyl)amine based tripodal ligands. DFT calculations were performed to obtain geometry optimized structures of all the other complexes (3-12).  相似文献   

10.
Two new series of copper(II), nickel(II), cobalt(II), zinc(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) complexes with two bifunctional tridentate Schiff base, H4L1 and H2L2 ligands have been prepared. The Schiff base, H4L1 and H2L2, ligands were synthesized by the condensation of 4,6-diacetylresorcinol with o-aminophenol or o-phenylenediamine. The ligands are either di- or tetra-basic with two symmetrical sets of either OON or NNO tridentate chelating sites. The ligands and their metal complexes have been characterized by elemental analysis, 1H-n.m.r., FT-IR, mass, electronic, esr spectra and thermal gravimetric analysis and magnetic susceptibility. With the exception of CoII ion with H2L2 which afforded a trinuclear complex, a variety of binuclear complexes for the rest of the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The bonding sites are the azomethine and amino nitrogen atoms, and phenolic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.  相似文献   

11.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

12.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

13.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

14.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   

15.
Dimanganese complexes Mn2 III(L1)(OAc)4 and Mn2 III(L2)(OAc)4 with the phthalazine-based ligands 1,4-di(2′-benzimidazolyl)aminophthalazine (H2L1) and 1,4-di(N-methyl-2′-benzimidazolyl)aminophthalazine (H2L2) have been prepared and characterized. The complexes accelerate the disproportionation of H2O2 into water and dioxygen in buffered aqueous solutions in a near-neutral pH range thus can be regarded as catalase models. Results of kinetic measurements indicate a similar mechanism for the two catalysts, but formation of the proposed peroxo-adduct intermediate is less favored for Mn2 III(L1)(OAc)4. It is presumed to be the reason for the lower rates for this catalyst even at higher pH.  相似文献   

16.
Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C9H13N3OS2 or L1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C9H13N3OS or L2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.  相似文献   

17.
Summary The reaction of aqueous solutions of 3d metal salts with bis(hydroxylammonium) bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate in a 12 mole ratio yielded complexes of the general formula [MnL2(NH3OH)2]·nH2O and [FeIIIL2(NH3OH)H2O]·H2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, and L=bicyclo[2.2.1]-hept-5-en-endo-2,3-cis-dicarboxylate dianion.The compounds were characterized by i.r. spectra and thermal analysis. For all complexes, an octahedral structure is proposed which is formed bytrans coordination of two bidentate (OO) ligands (L) and two NH3OH+ cations attrans positions, coordinated also through oxygen atoms; and similarlytrans positions for NH3OH+ and H2O in the case of the FeIII complex.  相似文献   

18.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

19.
The reaction of cadmium(II) perchlorate with urocanic acid under different conditions created three novel coordination compounds: [Cd2(L2)2‐(L3)2(H2O)8] ( 1 ), {[Cd(L)(L2)](H2O)1/2}n ( 2 ), and {[Cd(L3)2](H2O)3/2(EtOH)}n ( 3 ), in which L, L2, and L3 are three urocanate tautomers. Complex 1 consists of two separate mononuclear units with different urocanate tautomers, which self‐assemble into a 3D hydrogen‐bonding network constructed by alternating 2D layers, whereas complexes 2 and 3 self‐assemble into 3D alpha‐polonium and four‐fold interpenetrated diamondoid networks, respectively. The tautomerism of the urocanate ligands and the enormous structural diversity of their complexes are present in this system, which illustrates that the reaction temperature, pressure, and the metal ions themselves act cooperatively to tune the tautomerism of the ligands and the frameworks of their metal coordination compounds. The fluorescence‐emission and nitrogen‐adsorption properties of these complexes are also investigated.  相似文献   

20.
Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of Eu L1 (NO3)3 and [Eu L2 (NO3)3(H2O)] Et2O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII, whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII/EuIII and L1/L2 were analyzed in DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号