首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

2.
Reactions designed to give Se6[Sb(OTeF5)6]2 by the reaction of Se2Br2, 4Se, and 2Ag[Sb(OTeF5)6] lead to products that include [Ag2(Se6)(SO2)2][Sb(OTeF5)6]2(1). The distorted cubic (Ag2Se6 2+) n consists of a Se6 molecule bicapped by two silver cations (local D3d sym.). Reactions of AgMX6 (M = As, Sb) with selenium in liquid SO2 yielded crystals of [Ag2Se6][AsF6]2 (2) and [AgSe6][Ag2(SbF6)3] (3). Both salts contain stacked arrays of [AgSe6]+ half-sandwich cationic units. [Ag2Se6][AsF6]2 in addition contains stronger, linear Se─Ag─Se horizontal linkages between the vertically stacked cationic columns. [AgSe6][Ag2(SbF6)3] features a remarkable three-dimensional [Ag2(SbF6)3]? anion held together by strong Sb─F···Ag contacts between component Ag+ and SbF6 ? ions. Hexagonal channels through this honeycomb-like anion are filled by the stacked [AgSe6 +]x.  相似文献   

3.
Second-sphere coordination refers to any intermolecular interactions with the ligands directly bound to the primary coordination sphere of a metal ion. Four supramolecular complexes, 0.5[L·2H]2+·0.5[MCl4]2?·[CH3OH]·0.5[CH2Cl2] (M = Co, crystal 1; M = Mn, crystal 2), 0.5[L·2H]2+·0.5[ZnBr4]2?·[CH3OH]·0.5[CH2Cl2] (crystal 3), and 0.5[L·2H]2+·0.5[Cu2Br4]2?·H2O (crystal 4), based on naphthalene-based ligand N,N,N′,N′-tetra-p-methylnaphthyl-ethanediamine (L), have been synthesized. X-ray analysis reveals that 1–3 are isostructural, in which the methanol molecules are bridges, connecting the protonated L and metal chloride anions via N–H?O and O–H?Cl (Br) interactions to construct the host framework, and forming X-shaped cavity accessible for the inclusion of weakly polar guest molecules of dichloromethane. Dichloromethane is connected with the host framework through van der Waals forces. In 4, a dinuclear anion [Cu2Br4]2? is connected with the ligand through N–H?Br interactions, in which the water molecules are accommodated between chains formed by the ligand and [Cu2Br4]2?. Structure stability, thermal analysis, and photoluminescent properties were studied for 1–4.  相似文献   

4.
Three coordination polymers containing Cd(II) and Co(II), connected via 4-[(3-pyridyl)methylamino]benzoate (L?), have been synthesized in hydrothermal conditions. In [Cd(L)Cl] n (1), adjacent Cd(II) cations are linked by carboxylates to give a dinuclear cluster. Pairs of L? bridge the dinuclear cluster to form double helical chains, and these chains are further linked by Cl? to produce a 4-connected net with (42?·?63?·?8) topology. [CdL2] n (2) contains 1-D ladder-like chains. The packing structure displays a 3-D supramolecular structure, with π?···?π interactions stabilizing the framework. [CoL2] n (3) has a 2-D extended supramolecular structure via π?···?π interactions of 1-D coordination polymers of 3. The crystal structures of 1–3 have been determined by single-crystal X-ray diffraction. Luminescent properties for 1 and 2 are discussed.  相似文献   

5.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

6.
Structural Chemistry of the Alkyl- and Arylhaloarsenates(III) [Me2As2Cl5], [RAsCl3], [R2As2Br6]2– (R = Me, Et, Ph) and [Ph2AsX2] (X = Cl, Br) The alkyl- and arylhaloarsenates(III) [Ph4P][Me2As2Cl5] ( 1 ), [Ph4P][RAsCl3] (R = Me, Et, Ph, 2 – 4 ), [Me3PhN][PhAsCl3] ( 5 ), [Ph4P]2[R2As2Br6] (R = Me, Et, Ph, 6 – 8 ), [n-Pr4N][Ph2AsCl2] ( 9 ) and [n-Bu4N][Ph2AsBr2] ( 10 ) have been prepared and their structures established by X-ray diffraction. In contrast to the chloroarsenates(III) 2 – 5 , which all contain isolated ψ-trigonal bipyramidal anions [RAsCl3], the analogous bromoarsenates(III) 6 – 8 exhibit dimeric structures. Whereas the trans sited As–Cl distances in 2 and 3 are very similar a pronounced degree of asymmetry is apparent for the Cl–As–Cl three-centre bonds in 4 and 5 [2.396(1) and 2.602(1) Å in 5]. In 6 and 7 Ci symmetry related RAsBr2 units are connected through long As…Br bonds [2.926(1) and 3.116(2) Å in 6 ]. The bromophenylarsenate(III) anion of 8 which contains two effectively undistorted ψ-trigonal bipyramids [PhAsBr3] associated by weak As…Br interactions [3.117(2) Å]. In view of its very long bridging As…Cl distances the [Me2As2Cl5] anion in 1 can, as 6 an 7 , be regarded as two MeAsCl2 molecules weakly linked through a chloride ion.  相似文献   

7.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

8.
A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water‐soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H+ form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE2+) in aqueous HCl solutions in the presence of [ZnCl4]2? and [CdCl4]2? anions as structure‐directing agents. Single‐crystal X‐ray diffraction analysis revealed that both iQ[7]–AE2+–[ZnCl4]2?–HCl and iQ[7]–AE2+–[CdCl4]2?–HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl4]2? and [CdCl4]2? anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE2+ coordination polymers through outer‐surface interactions of Q[n]s.  相似文献   

9.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

10.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

11.
The effect of the ion-pairing of Co(III) complexes with p-sulfonatothiacalix[4]arene (STCA) on Fe(II)–Co(III) electron transfer rate was evaluated from the analysis and comparison of kinetic data in double Co(III)–Fe(II) and triple Co(III)–Fe(II)—STCA systems at various concentration conditions. Complexes [Co(en)3]3+(1), [Co(en)2ox]+(2), [Co(dipy)3]3+ (3), [Co(His)2]+(4) and [Fe(CN)6]4− were chosen as Co(III) and Fe(II) compounds. The effect of STCA was found to correlate with the association mode. The outer-sphere association with STCA was found to exhibit the insignificant effect on Fe(II)–Co(III) electron transfer k et constants for complexes 3 and 4 with bulky and rigid chelate rings, while more sufficient inclusion of flexible ethylendiaminate rings of 1 and 2 into the cavity of STCA results in the unusual increase of k et.  相似文献   

12.
A series of different conjugated systems of 2D/3D supramolecular metal-organic frameworks (SMOFs) are constructed by C/O?H?Cl hydrogen bonds and π?π interactions. These complexes, [HgL1Cl2] (1), [HgL2Cl2] (2), [HgL3Cl2] (3), [CdL4Cl4]2 (4), and [CdL5Cl2(CH3OH)] (5), have been synthesized and characterized by single-crystal X–ray diffraction, 1H NMR, FT–IR, and EA. The X-ray diffraction analyses reveal that 1 features a 3D supramolecular framework with {44·66} topology structure, while 2, 3, and 5 exhibit 3D 6-connected {412·63} topology structures. Complex 4 shows a two-dimensional layer with 44 topology structure. Based on these varied structures caused by different conjugated system, the emission maximum wavelengths of 15 can be tuned in a large range of 492–587 nm. Both electron-donating ability and the conjugated system in general can support λem shift to red direction. In order to have better understanding of electronic transitions of the complexes, a time-dependent DFT study has been performed. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates potential to serve as photoactive materials.  相似文献   

13.
Four new coordination polymers, [Cd(3-TPTP)Cl]2 (3-HTPTP = 4′-(3-tetrazolylphenyl)2,2′:6′2′′-terpyridine, 1), {[Cd(3-TPTP)(pBDC)0.5]?4H2O}n (pH2BDC = 1,4-benzenedicarboxylic acid, 2), {[Mn(3-TPTP)(mBDC)0.5]?5H2O}n (mH2BDC = 1,3-benzenedicarboxylic acid, 3), and [Pb(3-TPTP)(H2O)2]?OH (4), were obtained. Compounds 13 are composed of binuclear [M2(3-TPTP)2] ring as building unit. In 1, the binuclear rings pack into a 3-D supramolecular framework via various hydrogen bonds. In 2 and 3, the binuclear rings are connected by mBDC2? and pBDC2?, respectively, resulting in two types of 1-D chains. In 4, the mononuclear [Pb(3-TPTP)] units are connected by Pb?N weak interactions, giving a chiral 1-D coordination chain, which is further connected by O–H?N interaction to form a chiral 3-D supramolecular framework. The phase purity of 14 and luminescence properties of 1, 2, and 4 were also investigated.  相似文献   

14.
Novel [2n]thiacalixarenepyrazine and [2n]thiacalixarenetriazine systems were synthesised by one-pot SNAr reactions. A screening of the metal-complexing ability of [26]hexathiacalix[3]arene[3]pyrazine revealed its affinity for CuI, CuII and AgI metal salts.  相似文献   

15.
Crystal Structures of [Et3PNAsPh3]2[Ag2Br4] and [Et3PNAsPh3]2[Pd2Br6] Colourless single crystals of [Et3PNAsPh3]2[Ag2Br4]( 1 ) and red single crystals of [Et3PNAsPh3]2[Pd2Br6]( 2 ) have been isolated from saturated solutions in acetonitrile of equivalent mixtures of [Et3PNAsPh3]Br with AgBr and PdBr2, respectively. Both complexes were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at ‐70°C: a = 985.0(2), b = 1042.2(5), c = 1345.8(5) pm, α = 102.88(2)°, β = 105.73(2)°, γ = 94.94(2)°, R1 = 0.0577. 2 : Space group P21/c, Z = 2, lattice dimension at ‐70°C: a = 1003.0(1), b = 1371.8(2), c = 1974.0(1) pm, β = 93.30(1)°, R1 = 0.0458. The dimeric anions of 1 and 2 form planar, centrosymmetric complex units.  相似文献   

16.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

17.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

18.
The reaction of W6Br12, NaBr, and WO2Br2 in the presence of Br2 in a sealed silica tube yields Na[W2O2Br6] together with WOBr4 and WO2Br2 in the low temperature zone (temperature gradient 1030/870 K). Na[W2O2Br6] crystallizes orthorhombically in the space group Immm (no. 71) with a = 3.775 Å, b = 10.400 Å, c = 13.005 Å and Z = 2. Pairs of condensed trans-[WO2Br4] octahedra with a common Br2 edge form along [100] double chains [W2O4/2Br6]1– via the oxygen atoms. The mixed valent tungsten atoms are bonded to W2 pairs with a 2 c–3 e bond (d(W–W) = 2.946 Å, d(W–O) = 1.888 Å, d(W–Brb) = 2.537 Å, d(W–Brt) = 2.535 Å, ∢O–W–O = 177.4°, ∢Brb–W–Brb (endocyclic) = 109.0°). The Na+ cations connect the anionic double chains to form two-dimensional layers parallel (001), which interact by van der Waals forces. The cations are eightfold coordinated by a cube of the terminal Brt ligands of the polymeric anions (d(Na–Br) = 3.138 Å). Na[W2O2Br6] may be discussed as an intercalation compound of the oxide bromide WOBr3.  相似文献   

19.
Bi24Ru3Br20: A Pseudo-Tetragonal Structure with [RuBi6Br12] Clusters and [Ru2Bi17Br4] Groups The melting reaction of Ru with Bi and BiBr yields black, lustrous, air insensitive crystals of the subbromide Bi24Ru3Br20. The orthorhombic crystal structure (space group Pc21n, a = b = 1377.8(1) pm, c = 3222.3(4) pm, V = 6117.0 · 106 pm3) deceives pseudo-symmetry with respect to the tetragonal space group P4/ncc leading to multiply twinned crystals. The structure can formally be subdivided in [RuBi6Br12] clusters, [Ru2Bi17Br4] stacks, and [BiBr4] groups.  相似文献   

20.
A new vicinal dioxime ligand with two crown-ether groups, 1,2-bis[(monoaza[15]crown-5)-N-Yl]-glyoxime(LH2), has been prepared from cyanogen di-N-oxide and monoaza[15]crown-5. Ni(II), Pd(II), and Pt(IV) complexes of LH2 with or without alkali-metal ions bound to macrocyclic groups have been isolated. The high affinity of [Pd(LH)2] and [Ni(LH)2] for the K+ ion is observed in solvent extraction experiments. A single-crystal X-ray structure confirms the postulated geometry of [Pd(LH)2]- The Pd-atom of the centro-symmetric molecule has square-planar PdN4 coordination where Pd–N distances range from 1.978(3) to 1.970(3) Å. The N–Pd–N intraligand angle is 79.9(1)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号