首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3-D metal-organic framework [Cd3(L)2(DMF)2]?·?2H2O?·?2DMF (1) (H3L?=?2-(dimethylcarbamoyl)biphenyl-5,2′,5′-tricarboxylic acid, DMF?=?N,N-dimethylformamide) with trinuclear Cd(II) units has been prepared. Complex 1 is a (3,?6)-connected (42?·?6)2(44?·?62?·?88?·?10) coordination net, which results from the solvothermal in situ formation of a new asymmetric ligand, 2-(dimethylcarbamoyl)biphenyl-5,2′,5′-tricarboxylic acid (H3L), through amidation of biphenyl-2,5,2′,5′-tetracarboxylic acid (H4bptc). Additionally, the luminescence of 1 has been investigated.  相似文献   

2.
Direct reaction of pyridine-3,5-dicarboxylic acid (H2PDA) and oxalic acid (H2ox) with Ln(ClO4)3 · nH2O under hydrothermal conditions gave three 3-D coordination networks, [Ln(PDA)(ox)0.5(H2O)2] · H2O [Ln = La(1), Nd(2), and Eu(3)]. The complexes were characterized by elemental analysis (EA), X-ray single-crystal diffraction, infrared spectroscopy (IR), and thermogravimetric analysis (TGA). Single crystal X-ray diffractions shows that the compounds are isomorphous and have 3-D framework structures, in which pyridine-3,5-dicarboxylates (PDA2?) link lanthanides to give 2-D layers, which are further fabricated into a 3-D network via bis-bidentate oxalate bridging. Luminescence of 3 is investigated.  相似文献   

3.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

4.
The coordination compounds of group 12 halides with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen), 2[CdF2(bpy)2]·7H2O (1), [ZnI(bpy)2]+·I3? (2), [CdI2(bpy)2] (3), [Cd(SiF6)H2O(phen)2]·[Cd(H2O)2(phen)2]2+·F·0.5(SiF6)2–·9H2O (4), [Hg(phen)3]2+·(SiF6)2–·5H2O (5), [ZnBr2(phen)2] (6), 6[Zn(phen)3]2+·12Br·26H2O (7) and [ZnI(phen)2]+·I (8), have been synthesized and characterized by X-ray crystallography, IR spectroscopy, elemental and thermal analysis. Structural investigations revealed that metal?:?ligand stoichiometry in the inner coordination sphere is 1?:?2 or 1?:?3. A diversity of intra- and intermolecular interactions exists in structures of 18, including the rare halogen?halogen and halogen?π interactions. The thermal and spectroscopic properties were correlated with the molecular structures of 18. Structural review of all currently known coordination compounds of group 12 halides with bpy and phen is presented.  相似文献   

5.
The reaction of α-[SiMo12O40]4? with trivalent cations Ln3+ and N-methyl-2-pyrrolidone leads to a series of complexes of formula [Ln(NMP)4(H2O) n ]H[SiMo12O40]?·?2NMP?·?mH2O [where Ln?=?La (1), Pr (2), Nd (3), Sm (4), Gd (5), n?=?4, Ln?=?Dy (6), Er (7), n?=?3. NMP?=?N-methyl-2-pyrrolidone]. The syntheses, X-ray crystal structures, IR, and ESR spectra and thermal properties of the complexes 1, 2, 4, 6, 7 have been reported previously. Here, we report X-ray crystal structures, IR, UV, ESR spectra and thermal properties of the complexes [Nd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?1.5H2O (3), and [Gd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?H2O (5). In addition, the electrochemical behaviour of this series of complexes in aqueous solution and aqueous-organic solution has been investigated and systematic comparisons have been made. All these complexes exhibit successive reduction process of the Mo atoms.  相似文献   

6.
Two new erbium compounds, [Er2(BDC)3(DMF)2] (1) and [Er2(CQC)3(DMF)3(H2O)]?·?DMF?·?H2O (2), where BDC stands for 1,4-benzenedicarboxylate, CQC for 2-(4-carboxyquinolin-2-yl)quinoline-4-carboxylate, and DMF for N,N-dimethylformamide, have been synthesized through pre-heating and cooling-down crystallization. In 1 the Er(III) is seven-coordinate with oxygen atoms from six BDC and one DMF, forming a three-dimensional open-framework structure. Compound 2 possesses a 2D structure based on dinuclear Er(III) building units. The photoluminescence of 1 has also been investigated.  相似文献   

7.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

8.
Three new coordination polymers, [Cu(butca)0.5(bipy)(H2O)] n · 2nH2O (1), [Zn(H2butca) (phen)(H2O)] n · nH2O (2), and [Cd(H2chhca)0.5(phen)(H2O)] n · 2nH2O (3) (H4butca =1,2,3,4-butanetetracarboxylic acid, H6chhca = 1,2,3,4,5,6-cyclohexanehexacarboxylic acid), were prepared and characterized by EA, IR, TG, and X-ray crystallography. Complex 1 is a 1-D double-chain coordination polymer in which tetradentate butca4? coordinates to four Cu(II) ions through four monodentate carboxylates. Complex 2 is a 1-D chain with tridentate H2butca2? coordinating to two Zn(II) ions through monodentate and chelating carboxylates. Complex 3 is a 1-D double-chain coordination polymer. H2chhca4? is octadentate coordinating to four Cd(II) ions through four chelating carboxylates. Hydrogen bonds and π–π stacking interactions play important roles in the formation of supramolecular architectures. The thermal stabilities of 13 show dehydrated coordination polymers are thermally stable in the range 260–400°C.  相似文献   

9.
A series of transition metal (Zn, Cu, Mn) complexes with chelidamic acid (2,6-dicarboxy-4-hydroxypyridine, H3CAM) and 4,4′-bipyridine (bipy), [Zn2(bipy)Cl2] n (1), {[Zn2(HCAM)(H2CAM)2]?·?(bipy)?·?3.5H2O} n (2), [Mn3(HCAM)3(H2O)7]?·?(bipy)?·?3H2O (3), [Mn2(HCAM)2(bipy)?·?(H2O)2]?·?4H2O (4), [Cu2(HCAM)2(bipy)?·?(H2O)2]?·?4H2O (5), and Cu2(HCAM)2(bipy)?·?(H2O)2 (6), have been synthesized by hydrothermal or solution methods and characterized by single-crystal X-ray diffraction. The structural analyses reveal that 1 exhibits a zigzag chain of Zn(II), Cl?, and 4,4′-bipyridine. In 2, a 1-D polymeric [Zn2(HCAM)(H2CAM)2] n chain and a discrete 4,4′-bipyridine assemble into a 2-D supramolecular network via H-bonds. Complex 3 consists of asymmetric units of Mn3(HCAM)3(H2O)7 that are linked by hydrogen bonds to form a 2-D H-bonded network. Complexes 46 are isomorphous and possess discrete structures. The photoluminescent properties of 16 at room temperature were studied.  相似文献   

10.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

11.
Four coordination polymers, [Ag(L1)](m-Hbdc) (1), [Ag(L1)]2(p-bdc)?·?8H2O (2), [Ag(Hbtc)(L1)][Ag(L1)]?·?2H2O (3) and [Ag2(L2)2](OH-bdc)2?·?4H2O (4), where L1?=?1,1′-(1,4-butanediyl)bis(imidazole), L2?=?1,2-bis(imidazol-1-ylmethyl)benzene, m-H2bdc?=?1,3-benzenedicarboxylic acid, p-H2bdc?=?1,4-benzenedicarboxylic acid, H3btc?=?1,3,5-benzenetricarboxylic acid, and OH–H2bdc?=?5-hydroxisophthalic acid, were synthesized under hydrothermal conditions. Compound 1 contains a–Ag-L1–Ag-L1–chain and a hydrogen-bonding interaction induced–(m-Hbdc)-(m-Hbdc)–chain. Compound 2 consists of two independent–Ag-L1–Ag-L1–chains. P-bdc anions are not coordinated. Hydrogen bonds form a 3D supramolecular structure. A novel (H2O)16 cluster is formed by lattice water molecules in 2. Compound 3 contains a–Ag-L1–Ag-L1–and a–Ag(Hbtc)-L1–Ag(Hbtc)-L1–chain. The packing diagram shows a 2D criss-cross supramolecular structure, with?π?···?π?and C–H ···?π?interactions stabilizing the framework. Compound 4 contains a [Ag2(L2)2]2+ dimer with hydrogen-bonding,?π?··· π, and Ag ··· O interactions forming a 3D supramolecular framework. The luminescent properties for these compounds in the solid state are discussed.  相似文献   

12.
分别以Cu (ClO4)2·6H2O、Sc (ClO4)3·6H2O和Fe (ClO4)3·9H2O为金属盐,2-硫代巴比妥酸(H3tba)为配体,通过扩散反应得到了3种不同结构的配合物{[Cu6(H2tba)6]·2DMF·xSolvent}(1)、{[Sc (H2tba)3(DMF)]·2DMF}n(2)和[Fe (H2tba)2(H2O)2]n(3),并用红外光谱、元素分析、热重分析和粉末X射线衍射对配合物进行了表征。单晶X射线衍射结构分析表明配合物1是一个具有三方反棱柱构型的六核铜原子簇合物,配合物2是一个具有二维层状结构的化合物,配合物3是一个具有三维网状结构的配位聚合物。配合物1在390 nm光照激发下在735 nm处有强的荧光发射峰。  相似文献   

13.
This article describes supramolecular interactions induced in a high molecular weight dithiocarbamate, padtc, by its design. Synthesis, spectral studies involving zinc, cadmium and mercury, padtc, and adducts with tmed, such as [Zn(padtc)2] (1), [Zn(padtc)2(tmed)]?·?C6H5CH3?·?0.5(H2O) (2), [Cd(padtc)2] (3), [Cd(padtc)2(tmed)]?·?C6H5CH3?·?0.36(H2O) (4), [Hg(padtc)2]?·?H2O (5), [Hg(padtc)2(2,2′-bipy)]?·?H2O (6), [Hg(padtc)2(1,10-phen)]?·?H2O (7), and [Hg(padtc)2(oxine)]?·?H2O (8) (where padtc??=?N,N′-(iminodiethylene)bisphthalimidedithiocarbamate, 1,10-phen?=?1,10-phenanthroline, tmed?=?tetramethylethylenediamine, 2,2′-bipy?=?2,2′-bipyridine, oxine?=?8-hydroxyquinoline) along with the single crystal X-ray structural analysis of [Zn(padtc)2(tmed)]?·?C6H5CH3?·?0.5(H2O) (2) and [Cd(padtc)2(tmed)]?·?C6H5CH3?·?0.36(H2O) (4) are reported. All the complexes were characterized by IR, NMR (1H and 13C), and thermogravimetric study. The IR spectra of the complexes show the contribution of the thioureide form to the structures. In 13C NMR spectra, the most important thioureide (N13CS2) carbon signals are observed at 210–212?ppm. Single crystal X-ray structural analyses of 2 and 4 show the presence of extensive supramolecular interactions stabilizing the solid-state structure. Both zinc and cadmium are in a distorted octahedral environment with MS4N2 chromophores. VBS of Zn and Cd are 1.76 and 1.98, respectively, supporting the correctness of the determined structure and the valence of the central metal ions.  相似文献   

14.
Reaction of 2-methyl-imidazole-4,5-dicarboxylic acid (H3MIDC) with different salts (Zn and Mn) has led to three new H n MIDC–metal complexes varying from zero- to two-dimensional structures under hydrothermal and solvothermal conditions. The complex [Zn(H2MIDC)2(H2O)2] (1) is a 0-D complex constructed by H2MIDC? and Zn centers and the complex [Mn(HMIDC)(H2O)2]?·?H2O (2) is a polymeric 1-D chiral chain constructed by HMIDC2? and Mn centers connected into a 3-D supramolecular framework with a 1-D channel. The complex [Zn3(MIDC)2(H2O)2(DMF)2]?·?0.5H2O (3) shows a 2-D puckered structure composed of MIDC3? and Zn. The differences of the three complexes demonstrate that reaction solvent and temperature have important effects on the structure of these complexes. Complex 3 shows strong fluorescence in the solid state at room temperature.  相似文献   

15.
A series of new lanthanide coordination polymers has been synthesized and structurally characterized; [Ln4(TTHA)2(pzac)(H3O)2(H2O)]·5H2O (Ln = Pr (1a) and Nd (1b)), [Sm8(TTHA)4(pzac)0.5(H3O)(H2O)7.5]·4H2O (2), [Ln4(HTTHA)2(SO4)(H2O)4]·5H2O (Ln = Pr (3a) and Nd (3b)), where H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid, and H2pzac = 2,5-dioxo-piperazine-1,4-diacetic acid. The compounds feature 3-D frameworks comprising the deprotonated H6TTHA as the primary ligand and either the in situ generated pzac2? or sulfate as the secondary ligands. The influence of the deprotonated H6TTHA in directing the framework structures through preferential coordination modes and molecular conformation is described. The effect of the secondary ligands in increasing the compactness of the frameworks and in the alternation of the framework topologies based on the four-connected pts type is described.  相似文献   

16.
Two new hetero-tetranuclear complexes, [Sm2(o-phen)2(DMF)6(H2O)2(µ-CN)4Fe2(CN)8]·;5H2O·;CH3OH (1) and [Sm2(o-phen)2(DMF)6(H2O)2(µ-CN)4Co2(CN)8]·;5H2O (2), have been prepared from reaction of SmCl3·;6H2O, K3[Fe(CN)6]·;3H2O or K3[Co(CN)6], and o-phen in methanol/DMF, and characterized. The structure of 1 consists of a cyano-bridged discrete cyclic tetranuclear complex in which the Sm(III) and Fe(III) centers are linked by four CN groups. Mössbauer spectrum of 57Fe indicates that both Fe(III) atoms in 1 have the same low-spin (S?=?1/2) electronic ground state. From comparison of the magnetic data of 1 and 2, at low temperature for 1 indicates weak ferromagnetic coupling between Sm(III) and Fe(III).  相似文献   

17.
Four new transition metal coordination complexes, [Cd(H2pimdc)2(H2O)2]?·?4H2O (1), [Zn(H2pimdc)2(H2O)2]2?·?7H2O (2), and [M(H2pimdc)2] (M?=?Cu (3) or Ni (4), H2pimdc??=?2-propyl-4,5-imidazoledicarboxylate), have been prepared by conventional synthesis and characterized by elemental analyses, IR, TG, and single-crystal X-ray diffraction. H2pimdc? is a bidentate chelating ligand in 1 and 2, leading to 3-D supramolecular structures through hydrogen bonds. However, H2pimdc? is a tridentate chelating-bridge ligand in 3 and 4, which exhibit 2-D layer structures. Thermal properties and photoluminescence spectra of 14 were measured.  相似文献   

18.
Five new organotin(IV) complexes, [(R3Sn)(O2C15H13)] n (R?=?Me: 1; nBu: 2), [RSn(O)(O2C15H13)]6 (R?=?Ph: 3), [(R2Sn)2(O2C15H13)2(μ 3-O)]2 (R?=?Me: 4), and [(R2Sn)(O2C15H13)2] (R?=?nBu: 5), have been prepared by the reaction of 2,3-diphenylpropionic acid and the corresponding organotin chloride with sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X-ray crystallography. The structural analyses reveal that 1 and 2 are 1-D infinite polymeric chains with Sn in syn–anti conformation. Complex 3 has a drum structure with six Sn centers. Complex 4 has a supramolecular chain-like ladder through weak intermolecular Sn?···?O interactions. Complex 5 is a monomer, connected into a 1-D polymer through intermolecular C–H?···?O interactions. Complexes 1 and 5 crystallize in the orthorhombic space groups P212121 and P21212, which are chiral space groups.  相似文献   

19.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

20.
Under hydrothermal conditions, four lanthanide coordination polymers were synthesized based on 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine 1-oxide (H3DCImPyO), with the molecular forumulas [Eu(HDCImPyO)·(H2O)2·(CHO2)]n (1), [Sm(HDCImPyO)·(H2O)2·(HCO2)]n (2), {[La(HDCImPyO)·(H2O)·(HCO2)]·O2}n (3) and {[Y(HDCImPyO)·(C2O4)·(H2O)2]·H2O}n (4). With diverse coordination modes, they were further characterized by elemental analysis, infrared spectroscopy, dielectric measurement, and single-crystal X-ray structural analysis. Complexes 1 and 2 were isostructural and had similar structures with {44, 62} topology. Complex 1 exhibited strong fluorescent emission in the solid state at room temperature. In 3, HDCImPyO2? adopted μ4-kO, O′: kO′, O′′: O′′′: O′′′′ coordination to bridge four La(III) ions to form a 3-D framework with {4. 52}2{42. 510. 612. 7. 83} topology. In 4, both HDCImPyO2? ligands and Y3+ cations were simplified as linkers to form an interpenetrating 3-D framework with {413. 62}2{422. 66} topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号