首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abstract

The kinetics and stability constants of l-tyrosine complexation with copper(II), cobalt(II) and nickel(II) have been studied in aqueous solution at 25° and ionic strength 0.1 M. The reactions are of the type M(HL)(3-n)+ n-1 + HL- ? M(HL)(2-n)+n(kn, forward rate constant; k-n, reverse rate constant); where M=Cu, Co or Ni, HL? refers to the anionic form of the ligand in which the hydroxyl group is protonated, and n=1 or 2. The stability constants (Kn=kn/k-n) of the mono and bis complexes of Cu2+, Co2+ and Ni2+ with l-tyrosine, determined by potentiometric pH titration are: Cu2+, log K1=7.90 ± 0.02, log K2=7.27 ± 0.03; Co2+, log K1=4.05 ± 0.02, log K2=3.78 ± 0.04; Ni2+, log K1=5.14 ± 0.02, log K2=4.41 ± 0.01. Kinetic measurements were made using the temperature-jump relaxation technique. The rate constants are: Cu2+, k1=(1.1 ± 0.1) × 109 M ?1 sec?1, k-1=(14 ± 3) sec?1, k2=(3.1 ± 0.6) × 108 M ?1 sec?1, k?2=(16 ± 4) sec?1; Co2+, k1=(1.3 ± 0.2) × 106 M ?1 sec?1, k-1=(1.1 ± 0.2) × 102 sec?1, k2=(1.5 ± 0.2) × 106 M ?1 sec?1, k-2=(2.5 ± 0.6) × 102 sec?1; Ni2+, k1=(1.4 ± 0.2) × 104 M ?1 sec?1, k-1=(0.10 ± 0.02) sec?1, k2=(2.4 ± 0.3) × 104 M ?1 sec?1, k-2=(0.94 ± 0.17) sec?1. It is concluded that l-tyrosine substitution reactions are normal. The presence of the phenyl hydroxyl group in l-tyrosine has no primary detectable influence on the forward rate constant, while its influence on the reverse rate constant is partially attributed to substituent effects on the basicity of the amine terminus.  相似文献   

2.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

3.
The compounds ML2(NCS)2, (M(II)=Mn, Co), FeL2(NCS)2×2H2O, NiL3 NCS)2×3H2O (L=2,2'-bipyridine, 2-bipy) MX2(NCS)2×2H2O (M(II)=Mn, Fe; X=4,4'-bipyridine, 4-bipy) have been prepared and their IR spectra and molar conductivity studied. The thermal decomposition of the complexes was studied under non-isothermal conditions in air. During heating the hydrated complexes lose crystallization water molecules in one or two steps and then decompose via different intermediate compounds to the oxides Mn3O4, Fe2O3, CoO, NiO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The rate for the substitution reaction of Co(edta)? with ethylenediamine was greatly enhanced by the presence of an excess of Co(II) ion in solution. The rate constant is (13±2) M?-sec?1 at μi=0.10M LiClO4, pH=11.1, [en]=0.10M and T=25°C. The mechanism for the reaction is discussed on the basis of the Marcus theory for outer-sphere processes corrected for electrostatic effects. This catalytic effect was not observed when the Co(II) was present in small amount due to the stability of the Co(edta)?2 complex toward substitution. The rate constant for direct substitution of Co(edta)? under the same conditions has also been measured and the value is (3.66±0.40)×10?4sec?.  相似文献   

5.
The temperature-jump method has been used to determine the nickel(II)- and cobalt(II)-arginine complexation kinetics. In the pH range studied, the neutral form of the ligand, HL, is the attacking, as well as the complexed, ligand species. The reactions reported on are of the type where n = 1, 2, 3 and M is Ni or Co. At 25° and ionic strength 0.1M the association rate constants are: for nickel(II) k1 = 2.3 × 103(±20%), k2 = 2.4 × 104(±20%), k3 = 3.5 × 104(±40%) M?1 sec?1; for cobalt(II) k1 = 1.5 × 105(±20%), k2 = 8.7 × 105(±20%), k3 = 2.0 × 105(±40%) M?1 sec?1. Arginine binds to metal ions less well than homologous chelating agents due to the electrostatic repulsion arising from the positively charged terminus of the zwitterion. Kinetically, the effect appears in the association rate constants with nickel reactions more strongly influenced than cobalt.  相似文献   

6.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

7.
The cobalt(II)—thiocyanate system was spectrophotometrically studied at 2.0 M ionic strength (NaClO4) and 25°C. The following formation constants were obtained: β1 = 6.9 M?, β2 = 28.9 M?2, β3 = 12.1 M?3 and β4 = 1.30 M?4. Three wavelengths were considered, 515, 590 and 615 nm, and the molar absorptivities of each species were calculated. Linear relationships were obtained for ε vs n and αi. There is strong evidence that the tetrahedral [Co(SCN)4]2? is virtually the only species absorbing at 590 and 615 nm. An indirect potentiometric method led to comparable equilibrium constants. The cadmium(II)—thiocyanate formation constants used in the indirect method, under the same conditions, were found to be β1 = 21.51 ± 0.09 M?1, β2 = 123 ± 1 M?2, β3 = 130 ± 3 M?3 and β4 = 173 ± 1.2 M?4, in good agreement with earlier literature data.  相似文献   

8.
Abstract

The EPR spectrum of N, N'-bis-(acetylacetone)ethylenediimino Cu(II), [Cu-en(acac)2], and N, N'-bis-(1,1,1-trifluoroacetylacetone)ethylenediimino-Cu(II), [Cu-en(tfacac)2], have been studied in doped single crystals of the corresponding Ni(II) chelate. The parameters in the usual doublet spin-Hamiltonian are found to be: Cu[en(acac)2], gz =2.183 ± 0.003, gx =2.047 ± 0.004, gy =2.048 ± 0.004, Az =204.8 × 10?4cm?1, Ax =31.5 × 10?4cm?1, Ay =27.1 × 10?4 cm?1, AzN= 12.8 × 10?4 cm?1 and AxN =AyN =14.3 × 10?4 cm?1: Cu[en(tfacac)2], gz =2.192 ± 0.002, gx =2.048 ± 0.004, gy =2.046 ± 0.004, Az =200.8 × 10?4 cm?1, Ax =31.1 × 10?4 cm?1, Ay =28.3 × 10?4 cm?1, AzN =12.8 × 10?4 cm?1 and AxN =AyN =14.6 × 10?4 cm?1. These parameters are related to coefficients in the molecular orbitals of the complex. It is found that the α-bonding is quite covalent and there is significant in-plane σ-bonding. From the nitrogen hyperfine structure it is determined that the hybridization on the nitrogen is sp2.  相似文献   

9.
Synthesis and Structure of Crown Ether Complexes of Potassium Hexachlorodipalladate(II) and -diplatinate(II) K2[MCl4] (M ? Pd, Pt) reacts with an excess of crown ether 18-crown-6 in water to give the crown ether complexes of potassium hexachlorodipalladate(II) and -diplatinate(II) [K(18-cr-6)]2[M2Cl6] (M ? Pd, 1 ; M ? Pt, 3 ), respectively, and in methylene chloride to give those of potassium tetrachloropalladate(II) and -platinate(II) [K(18-cr-6)]2[MCl4] ( 1 ) (M ? Pd, 2 ; M ? Pt, 4 ), respectively. 1 - 4 are characterized by microanalysis, NMR (1H, 13C), and vibrational spectroscopy. The X-ray structure analyses of the isotypic complexes 1 (P21/c; a = 10,9678(8), b = 8,2991(7), c = 22,469(2) Å, β = 98,523(5)°; Z = 2) and 3 (P21/c; a = 10,934(3), b = 8.376(3), c = 22,410(5) Å, β = 98,77(3)°; Z = 2) reveal [M2Cl6]2? anions of nearly D2h symmetry and [K(18-cr-6)]+ cations, in which the distance of K+ to the mean plane of the crown ether defined by its six oxygen atoms amounts to 0,830(4) Å in 1 and 0,821(2) Å in 3 , respectively. There are tight contacts between cations and anions (d(K-Cl): 3,341(2)/3,260(2) Å ( 1 ); 3,348(4)/3,259(4) Å ( 3 )).  相似文献   

10.
A series of neutral oxamato‐bridged heterobimetallic chains of general formula [MCu(Lx)2(S)2] ? p S ? q H2O [p=0–1, q=0–2.5; L1=N‐2,6‐dimethylphenyloxamate, S=DMF with M=Mn ( 1 a ) and Co ( 1 b ); L2=N‐2,6‐diethylphenyloxamate, S=DMF with M=Mn ( 2 a ) and Co ( 2 b ) or S=DMSO with M=Mn ( 2 c ) and Co ( 2 d ); L3=N‐2,6‐diisopropylphenyloxamate, S=DMF with M=Mn ( 3 a ) and Co ( 3 b ) or S=DMSO with M=Mn ( 3 c ) and Co ( 3 d )] were prepared by treating the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2]2? (x=1–3) with M2+ cations (M=Mn and Co) in DMF or DMSO as the solvent. The single‐crystal X‐ray structures of 2 a and 3 a reveal the occurrence of well‐isolated, zigzag, oxamato‐bridged manganese(II)–copper(II) chains. The intrachain Cu ??? Mn distances across the oxamato bridge are 5.3761(7) and 5.4002(17) Å for 2 a and 3 a , respectively, whereas the shortest interchain Mn ??? Mn distances are 9.4475(16) and 8.1649(14) Å for 2 a and 3 a , respectively. All of these MIICuII chains (M=Mn and Co) exhibit 1D ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling between the square‐planar CuII and octahedral high‐spin MII ions across the oxamato bridge [?J=31.4–35.2 and 33.4–44.8 cm?1, respectively; H =∑i?J S M,i( S Cu,i+ S Cu,i?1)]. Only the CoIICuII chains show slow magnetic relaxation effects characteristic of single‐chain magnets (SCMs). Analysis of the magnetic relaxation dynamics of 3 d shows a thermally activated mechanism (Arrhenius law dependence) with values of the pre‐exponential factor (τ0=2.6×10?9 s) and activation energy (Ea=7.7 cm?1) that are typical of SCMs. In contrast, two relaxation regimes are observed for 2 d in different temperature regions (τ0=3.2×10?10 s and Ea=24.7 cm?1 for T<4.5 K and τ0=3.2×10?14 s and Ea=37.5 cm?1 for T>4.5 K).  相似文献   

11.
By using dc and ac polarography, the kinetics of electroreduction of the palladium (II) complexes with β-alanine at a dropping mercury electrode was studied in solutions with the palladium (II) concentration from 2 × 10?5 to 2 × 10?4 M and variable β-alanine and sodium perchlorate concentrations (pH 6–12). One polarographic wave was observed in solutions with pH 9 and 10 at the β-alanine overall concentration of c βala = 1 × 10?3 to 5 × 10?2 M; two waves, at lower pH or higher c βala. It was concluded on the formation of different forms of palladium (II) complexes in the studied solutions; the complexes contained two to four β-alanine coordinated anions. Using the limiting diffusion currents for the two waves at pH 9–11 and c βala = 0.1 and 0.5 M, the stepwise stability constant for the Pd(βala) 4 2? complex was calculated. Using two ac peaks observed at pH 7–8 and c βala = 1 × 10?2 to 0.1 M, the stepwise stability constant for the Pd(βala) 3 ? . was calculated. The perchlorate ions adsorbed at the dropping mercury electrode, as well as βala? anions at their higher concentrations, hamper the electroreduction of the palladium (II) complexes with β-alanine.  相似文献   

12.
Cobalt (II) phthalocyanine tetracarboxylate [Co (II)Pc-COOH] has been prepared and used in aqueous solutions as a novel chromogenic reagent for the spectrophotometric determination of cyanide ion. The method is based on measuring the increase in the intensity of the monomer peak in the reagent absorbance at 682 nm due to the formation of a 1 : 2 [Co (II)Pc-COOH] : [CN] complex. The complex exhibits a molar absorptivity (ε) of 7.7 × 104 L mol?1 cm?1 and a formation constant (Kf ) of 5.4 ± 0.01 × 106 at 25 ± 0.1°C. Beer's law is obeyed over the concentration range 0.15–15 µg mL?1 (5.8 × 10?6–5.8 × 10?4 M) of cyanide ion, the detection limit is 20 ng mL?1 (7.7 × 10?7 M) the relative standard deviation is ±0.7% (n = 6) and the method accuracy is 98.6 ± 0.9%. Interference by most common ions is negligible, except that by sulphite. The proposed method is used for determining cyanide concentration in gold, silver and chromium electroplating wastewater bath solutions after a prior distillation with 1 : 1 H2SO4 and collection of the volatile cyanide in 1 M NaOH solution containing lead carbonate as recommended by ASTM, USEPA, ISO and APAHE separation procedures. The results agree fairly well with potentiometric data obtained using the solid state cyanide ion selective electrode.  相似文献   

13.
The data concerning a possibility of the synthesis (dd)heteronuclear hexacyanoferrates(II) with (M1)II and (M2)II ions (M1, M2 = Mn, Co, Ni, Cu, Zn, or Cd) due to the contact of M1 2[Fe(CN)6] immobilized in the gelatin matrix with aqueous solutions of M2Cl2 chlorides, were systematized and generalized. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 8–17, January, 2008.  相似文献   

14.
Crystalline cesium nitratometalates(II), Cs2[M(NO3)4] (M = Mn ( I ), Co ( II ), Ni ( III ), and Zn ( IV )) were synthesized from M(NO3)2 · n H2O and CsNO3 by heating at 80–120 °C over 10–12 h. According to X-ray crystal structure analysis, the compounds are built from Cs+ cations and [M(NO3)4]2– anions. The latter differ by the type of metal coordination: a dodecahedron for Mn in I (CN = 8, rMn–O 2.24–2.37 Å), a seven coordination for Co in II (CN = 4 + 3, rCo–O 2.03–2.16 Å and 2.21–2.35 Å) and a tetrahedral distorted dodecahedron for Zn in IV (CN = 4 + 4, rZn–O 1.98–2.15 Å and 2.38–2.72 Å). Ni atom in III has a distorted octahedral NiO6 environment provided by two unidentate and two bidentate NO3 groups with Ni–O distances of 2.01–2.14 Å. The differences in metal coordination are discussed in terms of valence electron configurations, ionic radii, and the packing effects.  相似文献   

15.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

16.
The advantage of capillary electrophoresis was demonstrated for studying a complicated system owing to the dependence of direction and velocity of the electrophoretic movement on the charge of complex species. The stability constants of copper(II) complexes with ions of succinic acid were determined by capillary electrophoresis, including the 1?:?2 metal to ligand complexes which are rarely mentioned. The measurements were carried out at 25 °C and ionic strength of 0.1, obtained by mixing the solutions of succinic acid and lithium hydroxide up to pH 4.2–6.2. It was shown that while pH was more than 4.5 the zone of copper(II) complexes with succinate moves as an anion. It is impossible to treat this fact using only the complexes with a metal-ligand ratio of 1?:?1 (CuL0, CuHL+). The following values of stability constants were obtained: log β(CuL) = 2.89 ± 0.02, log β(CuHL+) = 5.4 ± 0.5, log β(CuL22?) = 3.88 ± 0.05, log β(CuHL2?) = 7.2 ± 0.3.  相似文献   

17.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

18.
Abstract

The syntheses and crystal structures of [Co(nic)2(H2O)4] (1). [Co(iso)2(H2O)4] (2). [Cu(nic)2(H2O)4] (3), and [Cu(iso)2(H2O)4] (4) (nic = nicotinate; iso = isonicotinate) are reported. Complex 1 crystallizes in monoclinic, space group C2/m with cell parameters a =14.150(4). b = 6.883(2)., c = 8.497(2) Å, β= 118.28(2)° and Z = 2. The other crystals. 2. 3. and 4. are all triclinic, ; a = 9.777(3), b = 6.348(4), c = 6.888(3)Å, a= 113.10(6)., β= 110.55(3). γ = 97.61(5)°, and Z=l for 2; a = 7.0281(4), b = 7.7176(6), c = 8.6978(7)Å, a = 68.103(7), β = 68.526(5), γ = 62.550(6)°, and Z=1 for 3; a = 9.1807(4), b = 6.3334(3), c = 6.8871(3)Å, a= 108.213(4), β = 99.433(4), γ= 105.190(4)°, and Z= 1 for 4. The arrangements around the metal ions are trans-octahedra with two pyridyl nitrogens and two aqua oxygens in the equatorial positions and two aqua oxygens in the axial positions, although the Cu(II) complexes show a larger Jahn-Teller distortion.  相似文献   

19.
The reactions of Fe(CN)5dpa3? and Ru(NH3)5dpa2+ (dpa = 4,4′-dipyridylamine) with Co(edta)? have been investigated kinetically. For Fe(CN)5dpa3? complex, a linear relationship was observed between the pseudo-First-order rate constants and the concentrations of Co(edta) which leads to a specific rate 0.876 ± 0.006 M?1S?1 at T = 25°C., μ = 0.10 M and pH = 8.0. For the Ru(NH3)5dpa2+ system, the plots kobs vs [Co(edta)?] become nonlinear at concentrations of Co(edta) greater than 0.01 M and the reaction is interpreted on the basis of a mechanism involving the formation of an ion pair between Ru(NH3)5dpa2+ and Co(edta)? followed by electron transfer from Ru(II) to Co(III). The nonlinear least squares fit of the kinetic results shows that Qip = 10.6 ± 0.7 M?1 and ket = 93.9 ± 0.7 s?1 at pH = 8.0,μ = 0.10 M and T = 25°C.  相似文献   

20.
Self-assembly of CuSO4, para-methyl-2-phenyl acetate and 1,10-phenanthroline afforded good-quality crystalline complex in quantitative yield. The complex was characterized by FTIR and UV-visible spectroscopy, electrochemistry, and powder and single-crystal XRD studies. Its structure was found to possess axially elongated octahedral symmetry with CuO4N2 chromophore. Its purity was assessed by powder XRD spectrum. Absorption study yielded a broad band corresponding to 2Eg2T2 g transition. Electrochemical solution study indicated diffusion-controlled irreversible electron transfer process corresponding to Cu(II)/Cu(I) redox couple with diffusion coefficient = 7.89(±0.1)×10?9 cm2s?1. Results of spectroscopic techniques support each other. Complex exhibited excellent DNA-binding ability through UV-visible spectroscopy and cyclic voltammetry yielding Kb values 1.399 × 104 M?1 and 5.81 × 103 M?1, respectively. The complex exhibited significant activity against bacterial strains Escherichia coli, Micrococcus luteus and Staphylococcus aureus and good activity against Bacillus subtilis. These preliminary studies impart good biological relevance on the synthesized complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号