首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of [Co(NH3)5H2O] [Cr(NCS)6] has been studied using DSC and TG. The first step involves the loss of H2O and NH3 in a first-order process to produce [(NH3)5Co(SCN)3Cr(NCS)3]. A second step involves the loss of HSCN. Activation energies are presented and the mechanisms of the reactions are discussed in comparison to analogous cyanide complexes.  相似文献   

2.
Sulphito Cobalt(III) Ammines. III. Hydrogensulphito Cobalt(III) Ammines Concentrated acids react with [CoSO3(NH3)5]+ salts hydrogen- sulphitopentaamminecobalt(III) complexes. [Co(HSO3)(NH3)5]Cl2, [Co(HSO3)(NH3)5]Br2 and [Co(HSO3)(NH3)5](HSO4)2·H2O have been isolated. These substances are yellow coloured in contrast to an earlier work which reported red colour. Furthermore, the hydrogensulphitoacidotetreaammine complexes [Co(HSO3)Cl(NH3)4]Cl, [Co(HSO3)Cl(NH3)4]ClO4·H2O, [Co(HSO3)Br(NH3)4]Br and [Co(HSO3) CN(NH3)4]Cl habe been prepared. [Co(HSO3)Br(NH3)4]Br is losing spontaneously HBr forming [CoSO3Br(NH3)4]. The neutral complex [Co(HSO3)SO3(NH3)4]·1/2H2O has been obtained from cis- NH4[Co(SO3)2(NH3)4] and HCl. The absorption spectra in the IR, visible and UV region are reported and discussed. The HSO3 group is coordinated to Co through the S atom. The Co? S bond is weaker than in the sulphito complexes as concluded from the RAMAN spectrum. In the new complexes, the hydrogensulphito ligand causes a minor trans effect than the sulphito ligand.  相似文献   

3.
Three new lanthanide(III) complexes with N-(2-propionic acid)-salicyloylhydrazone (H2L, C10H10N2O4) ligand [La(HL)2(NO3)(H2O)2]3 ·4H2O(I), [Gd(HL)3] · 2(C2H5)3 N(II) and [Er(L)(HL)(H2O)2] · 2H2O(III) has been synthesized and characterized by elemental analyses, IR, UV, and molar conductivity. The crystal structures of three complexes have been determined by X-ray single-crystal diffractometer. In complex I, the La3+ ion is ten-coordinated by two tridentate ligands, one bidentate nitrate, and two water molecules. In complex II, the Gd3+ ion has a coordination number of nine by three tridentate ligands. In complex III, the Er3+ ion is eight-coordinated by two tridentate ligands and two water molecules. In all structures, tridentate ligands are coordinated by carboxyl O and acyl O atoms and azomethine N atom to form two stable five-membered rings sharing one side in the keto mode as indicated by the results of crystal structures and infrared spectral analysis.  相似文献   

4.
The solid reaction between [Cr(NH3)6]X3(X? = Cl, I, SCN and NO3) and L-α-alanine was studied under continuous rise in temperature and isothermal heating. Under continuous rise in temperature, the main products were [Cr(NCS)3-(NH3)3] (X? = NCS) and [Cr(L-ala)3] (X? = NO3), when [Cr(NH3)6]Cl3 and [Cr(NH3)6]I3 as starting complexes were used; in both cases only the decomposition proceeds. Under isothermal heating at 150°C the main products were [CrCl(NH3)5]-Cl2 (X? = Cl), [Cr(NH3)6]I2 (X? = I), [Cr(NCS)3(NH3)3] (X? = SCN) and [Cr(L-ala)3] (X? = NO3). In those matrix reactions, the ease of anion coordination was: SCN? > Cl? > I? > alanine. For the synthesis of tris(alaninato)chromium(III) complex the most desirable starting complex was [Cr(NH3)6](NO3)3.The solid state reaction between [Cr(en)3]X3 type complexes and NH4X (X? = F, Cl, Br, I and SCN), KX (X? = Cl, Br and I), and NaSCN have been reported by Wendlandt and Stembridge1. They reported that the reaction product in most cases, was cis-[Cr(en)2Y2]X, where Y and X are the same or different anions, depending upon the matrix material employed and the thermal matrix method appears to be a useful new route for the synthesis of bis(ethylendiamine(chromium(III) complexes.In the previous paper2, the solid state reaction between [Cr(NH3)6](NO3)3 and L-amino acids has been utilized in the preparation of tris(amino acidato)chromium(III) complexes. The preparation of [Cr(L-ala)3] by the solid state reaction between [Cr(NH3)6](NO3)3 and L-alanine have been reported. No studies on the effect of the counter-ion have been reported.In this paper, various hexaamminechromium(III) complexes, [Cr(NH3)6]X3 (X? = Cl, I, SCN and NO3), were heated with L-α-alanine under continuous rise in temperature and under isothermal heating at 150°C for studies on the ease of anion coordination. It will seen that the anion which replaces the ammonia in the hexaamminechromium(III) complex comes from either the alanine or counter-ion.  相似文献   

5.
Summary The kinetics of anation of chromium(III) species, [Cr(H2O)6]4+ and [Cr(H2O)5OH]2+, by L-phenylalanine in aqueous acid has been studied spectrophotometrically. Effects of varying [substrate], [ligand], [H+], , % ethanol and temperature were investigated. The kinetic data suggest a mechanism where outersphere-associations [between chromium(III) species and phenylalanine in the zwitterionic form] precede anation. Comparison of the results with published data suggest an Ia path for the [Cr(H2O)6]3+ reaction and Id path for the [Cr(H2O)5OH]2+ reaction.  相似文献   

6.
The kinetics of oxidation of the chromium(III) complexes, [Cr(Ino)(H2O)5]3+ and [Cr(Ino)(Gly)(H2O)3]2+ (Ino?=?Inosine and Gly?=?Glycine) involving a ligands of biological significance by N-bromosuccinimide (NBS) in aqueous solution to chromium(VI) have been studied spectrophotometrically over the 25–45°C range. The reaction is first order with respect to both [NBS] and [Cr], and increases with pH over the 6.64–7.73 range in both cases. The experimental rate law is consistent with a mechanism in which the hydroxy complexes [Cr(Ino)(H2O)4(OH)]2+ and [Cr(Ino)(Gly)(H2O)2(OH)]+ are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant, k 1, for the oxidation of the [Cr(Ino)(H2O)5]3+ (6.90?×?10?4?s?1) is lower than the value of k 2 (9.66?×?10?2?s?1) for the oxidation of [Cr(Ino)(Gly)(H2O)2]2+ at 35°C and I?=?0.2?mol?dm?3. The activation parameters have been calculated. Electron transfer apparently takes place via an inner-sphere mechanism.  相似文献   

7.
Two cobalt(II) complexes based on 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol (HOBPT), [Co3(OBPT)(μ3?OH)(SO4)2(H2O)3]·2H2O (1) and [Co(OBPT)2]·2H2O (2) were obtained. Single-crystal X-ray diffraction analyses indicate that 1 is a two-dimensional (2D) structure and the ligand adopts mono/bis-bidentate coordination; this coordination mode of this ligand was never found before. Magnetic properties of 1 have been studied, showing that 1 is a spin canted belt. Much different from 1, 2 is a discrete structure with tridentate ligand with its hydroxyl group deprotonated but uncoordinated. Lattice water molecules in 2 link to four-membered water clusters, which linked the [Co(OBPT)2] to 1-D chains along the b axis.  相似文献   

8.
The decomposition of solid K3[Fe(C2O4)3] · 2 H2O and K3[Cr(C2O4)3] · 3 H2O has been studied using TGA and DSC. After dehydration, the chromium compound was found to decompose by the loss of CO in two steps, the loss of CO2 and additional CO, and finally the loss of CO2. The final product appears to be either K3CrO3 or the mixed oxides of chromium and potassium. Kinetic parameters and enthalpy data are presented for these reactions. In the case of K3[Fe(C2O4)3] · 2 H2O, dehydration is followed by the loss of CO2 and CO, CO2 alone, and finally CO. The final product appears to be a basic carbonate of the type K3[FE(O)2(CO3)]. Kinetic and thermal data are presented for most of these decomposition reactions.  相似文献   

9.
Photosubstitution by OH? ligand was concluded from a photochemical study of the [Cr(CN)6]3? and [Cr(CN)5OH]3? complexes in alkaline medium. Photoaccelerated aquation was found to proceed in the case of aquocyanochromates(III): [Cr(CN)5H2O]2? and [Cr(CN)3(H2O)3].  相似文献   

10.
Asymmetric citrato dioxovanadates(V), [Hneo]4[V2O4(R-Hcit)(OH)][V2O4(S-Hcit)(OH)]?·?4H2O (1) and [Ni(phen)3]2[V2O4(R-Hcit)(OC2H5)][V2O4(S-Hcit)(OC2H5)]?·?4H2O (2) and (H4cit?=?citric acid, neo?=?2,9-dimethyl-1,10-phenanthroline, phen?=?1,10-phenanthroline) are isolated with the help of large counterions. Structural analyses of complexes 1 and 2 show that vanadium atoms are coordinated by tridentate citrate ligand and hydroxy or ethoxy groups, respectively. The insertions of hydroxy and ethoxy groups give new examples of the mixed RO-bridges for vanadium–citrate complexes.  相似文献   

11.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

12.
A tridentate NNO donor hydrazine Schiff base, HL, was obtained from condensation of pyridine 2-carbaldehyde and 4-hydroxy benzohydrazide. HL and azide ligands with Cr(III), Mn(II) and Fe(III) have been used to synthesize [Cr(L)(N3)(OCH3)]2 (1), [Mn(HL)2(N3)2] (2), and [Fe(L)(N3)(OCH3)]2·H2O (3). HL is quite diverse in its chelating ability and can be a neutral or monoanionic ligand as a tridentate unit. In this paper, we report structures showing different denticities of the ligand having different charges. The ligand 13 was characterized by elemental analysis, FT-IR, and UV–vis spectral studies and solid-state structures were determined by single-crystal X-ray diffraction analysis, revealing that 1 and 3 are binuclear, while 2 is mononuclear. The efficiencies of the ligand and the three complexes were evaluated for antimicrobial activity; MIC data revealed that HL 13 are not strongly active in comparison to standard drugs.  相似文献   

13.
Three new reduced amino-acid Schiff-base complexes, [Zn(HL)2] · H2O (1), [Ni(HL)2] · H2O (2), and [Cd(HL)2] · H2O (3), where H2L is a reduced Schiff base derived from condensation of N-(2-hydroxybenzaldehyde) and L-histidine, have been synthesized and characterized by elemental analysis, UV-Vis absorption spectra and single crystal X-ray diffraction. Complexes 13 are isostructural. All metal centers are six-coordinate with O2N4 donor sets in slightly distorted octahedra. Unlike its Schiff-base counterpart, the deprotonated monoanionic ligand HL? has a more flexible backbone and two HL? are tridentate to one metal. Moreover, the binding interactions of these complexes with calf thymus DNA (CT-DNA) have been investigated by UV-Vis spectra and fluorescence quenching, which show that the complexes bind in an intercalative mode.  相似文献   

14.
The apparent and limiting apparent molal volumes of dilute aqueous solutions of K3[Al(ox)3] · 3H2O, K3[Fe(ox)3] · 3H2O, K3[Co(ox)3] · 3H2O, and K3[Cr(ox)3] · 3H2O complexes were determined from density data measured at 15°, 25°, and 35°C. The apparent and limiting apparent molal adiabatic compressibilities of these complexes were determined from measured ultrasonic sound velocities at 15°, 25°, and 35° in dilute aqueous solutions. The volume change associated with complex formation is discussed in terms of the nature of the coordinate bond and the overall hydration behavior of these complexes.  相似文献   

15.
Two new iron(III) coordination compounds with 2-aminobenzothiazole have been prepared and identified as (C6H4NHC(NH2)S)2[FeCl4]Cl(H2O) (1) and (C6H4NHC(NH2)S)3[Fe(C2O4)3](H2O)2 (2). The compounds were characterized by thermogravimetric analysis in conjunction with evolved gases in air and spectroscopic studies. On the basis of quantum-mechanical calculations the interplay between two non-covalent interactions in 1, anion?···?π and ion-pair interactions, was analyzed.  相似文献   

16.
Treatment of freshly precipitated Cu(OH)2?·?xH2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) with oxalic and malonic acids in methanol-water at room temperature gave [Cu(tptz)(C2O4)(H2O)]?·?4H2O (1) and [Cu(pma)(C3H2O4)(H2O)]?·?H2O (2) (pma?=?2-aminocarbonylpyridine), respectively. Reaction in the absence of any acid resulted in [Cu(bpca)(tca)]?·?2H2O (3) (bpca?=?bis(2-pyridylcarbonyl)amide anion; tca?=?2-pyridinecarboxylate anion). Complex 1 consists of [Cu(tptz)(C2O4)(H2O)] and lattice H2O molecules; the tridentate tptz ligand, bidentate oxalate dianion and an aqua ligand are bound to Cu with distorted octahedral geometry. Complex 2 is composed of [Cu(pma)(C3H2O4)(H2O)] and lattice H2O molecules; the bidentate 2-aminocarbonylpyridine ligand, a bidentate malonate dianion and an aqua ligand are coordinated to Cu with a slightly distorted square pyramidal geometry. Complex 3 consists of [Cu(bpca)(tca)] and lattice H2O molecules. Square pyramidally coordinated Cu atoms are surrounded by tridentate bpca with nitrogen donor atoms and a bidentate 2-pyridinecarboxylate anion.  相似文献   

17.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

18.
New coordination compounds, (bmmpaH)[Fe(pydc)2] · (EtOH)0.8(H2O)0.2 (1), (8QH)[Fe(pydc)2] · H2O (2), (2ampyH)2[Mn(pydc)2] · H2O (3), (2ampyH)[Cr(pydc)2](2ampy)0.5 · H2O (4), [Co(H2O)5-μ-(pydc)Co(pydc)] · 2H2O (5), [Ni(pydcH)2] · H2O (6), and [Cu(pydcH)2] (7), where bmmpa, 8Q, 2ampy, pydcH2 are 5-bromo-6-methyl-2-morpholinepyrimidine-4-amine, 8-hydroxyquinoline, 2-amino-6-methylpyridine, and pyridine-2,6-dicarboxylic acid, respectively, have been synthesized and structurally characterized by elemental analyses, infrared, UV spectroscopic methods, and X-ray crystallography. Metal ions of 1 and 5 are six-coordinate with distorted octahedral geometries. Compound 1 is an anionic mononuclear complex and 5 is a binuclear compound constructed from cationic and anionic parts. The crystal data of 5 reveal that the cationic part is formed by five terminal waters and one μ-carboxylate oxygen O2 from the anionic portion and the anionic complex is built from two deprotonated (pydc)2? moieties. In the compounds, pydcH2 is tridentate by one nitrogen of pyridine ring and two oxygens of carboxylate.  相似文献   

19.
Double complex salts of lanthanum(III) sulphate complex anions with several cobalt(III) ammine complex cations, [Co(NH3)6][La(SO4)3]·H2O (1), (NH4)3[Co(NH3)5 H2O]-[La(SO4)3]2·2H2O (2), and (NH4)3[Co(NH3)4(H2O)2][La(SO4)3]2·2H2O (3), were prepared by the addition of hexaamminecobalt(III), pentaammineaquacobalt(III), and cis- tetra-amminediaquacobalt(III) complexes to the solution containing lanthanum(III) ion and excess ammonium sulphate. The IR spectra of sulphate groups of these double complex salts were much more complicated than those of the almost free sulphate groups such as (NH4)2SO4 and [Co(NH3)6]2(SO4)3·5H2O. Furthermore, values of activation energy in the dehydration process of 1, 2 and 3 were estimated using modified Doyle's and Wiedemann's method. They were 95.6 ± 4.3, 157.1 ± 15.5 and 163.2 ± 20.8 kJ mol?1, respectively. Here, one molecule water is released per molecule of 1, 2 and 3.  相似文献   

20.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号