首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The angular polytopic dipyridyl ligand 2,6-bis(quinoline-2-carboxamido)pyridine (H2L) was prepared. Assemblies of H2L with ZnAc2 and HgAc2 resulted in two new dinuclear complexes [Zn2(L)(Ac)2]?·?1.5H2O?·?0.5CH3OH (1) and [Hg2(L)(Ac)2]?·?5H2O?·?CH3OH (2) where the doubly deprotonated L2? bi-chelate as μ-kN,N′?:?kN″,N″′, bridging the two metal centers (Ac?=?acetate). In 1, the two Zn(II) ions are also doubly bridged by two Ac ions in a μ-kO?:?kO′ coordination, and thus each metal center adopts a distorted tetrahedral geometry. In 2, each Ac ion is only terminal to Hg(II), in a rare distorted triangular or T-shaped coordination geometry. Free H2L, 1, and 2 emit interesting bluish-green fluorescence with strong intensities. Thermogravimetric analysis of 1 shows that the dinuclear structure of 1 is stable to 382°C.  相似文献   

2.
Abstract

Nickel(II) complexes with a combination of trithiocyanuric acid and diamines or triamines of composition [Ni(aepa)(ttcH)(H2O)], [Ni(dien)(ttcH)(H2O)], [Ni(dpta)(ttcH)(H2O)] H2O, [Ni(phen)2(ttcH)]H2O, [Ni(phen)3](ttcH)-5H2O and [Ni(1,2-pn)3](ttcH)-H2O (aepa = N-(2-aminoethyl)-1,3-propanediamine,dien = diethylenetriamine,dpta = dipropylenetnamine, phen = 1,10-phenanthroline, 1,2-pn = 1,2-diaminopropane. ttcH3 = trithiocyanuric acid) have been prepared. The compounds have been characterized by means of elemental analysis, IR and electronic spectroscopies and magnetochemical measurements. Selected complexes were studied by thermal analysis. The compounds can be characterized as distorted octahedral Ni(II) complexes. It was found that the trithiocyanuric dianion can act either as a bidentate ligand or be situated out of the coordination sphere of nickel. The crystal and molecular structure of [Ni(dpta)(ttcH)(H2O)] H2O was determined. Crystals are monoclinic, space group P21/n, with a = 20.316(4), b = 7.967(2), c = 21.401(4) Å, β = 99.23(3)°, K=3419.1(13)Å3, Z = 4, T = 293 K. The nickel(II) atom is six-coordinated by three nitrogen atoms from dipropylene-triamine, nitrogen and sulphur from trithiocyanuric acid, and an oxygen atom from a water molecule in a distorted octahedral geometry.  相似文献   

3.
New complexes, [Fe(L)Cl], [Ni(L)], and [Zn(L)C2H5OH] (1–3), were synthesized by template reaction of 2-hydroxy-acetophenone-S-methyl-thiosemicarbazone with 2-hydroxy-benzaldehyde. The compounds were characterized by elemental analysis, magnetic measurements, FT-IR, 1H NMR, UV–visible, and ESI–MS spectra. In these complexes, the ligand is coordinated to the metal ion as dinegatively charged tetradentate chelating agents via the N2O2 donor set. The iron(III) and zinc(II) complexes exhibit square pyramidal geometry whereas the nickel(II) complex has a square planar geometry. The crystal structure of 1, determined by X-ray diffraction method, indicates that 1 crystallizes in the monoclinic space group P21/c with Z = 4. Thermal decompositions of the compounds have been investigated using TGA in air.  相似文献   

4.
In the present redetermination of the complex cis‐tetra­carbonyl­bis­(tri­cyclo­hexyl­phosphine)molybdenum(0), (I), [Mo(C18H33P)2(CO)4] or cis‐{η1‐[P(C6H11)3]2}Mo(CO)4, the Mo atom has a distorted octahedral geometry with a large P—Mo—P angle of 104.8 (1)°. A strong trans influence on the carbonyls in (I) is seen in a shortening of the Mo—C and a lengthening of the C—O distances opposite the phosphines compared with those that are cis. This influence is greatly diminished in the complex penta­carbonyl­(tri­cyclo­hexyl­phosphine)­molyb­denum(0), (II), [Mo(C18H33P)(CO)5] or {η1‐[P(C6H11)3]}­Mo(CO)5, the core of which has a slightly distorted C4v geometry.  相似文献   

5.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

6.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   

7.
Iron(III) and cobalt(III) complexes of types [Fe(LEt)2]ClO4·3/2C6H6 (1) and [Co(LEt)2]ClO4·2CH2Cl2 (2) with a new pyrimidine-derived thiosemicarbazone ligand, 2-S-methyl-6-methyl-4-formylpyrimidine-N(4)-ethylt-hiosemicarbazone (HLEt), having N, N, S donor centers have been synthesized and characterized by X-ray crystallography. The structural study shows distorted octahedral geometry for both 1 and 2 with MN4S2 chromophores. The space group of 1 is C2/c (monoclinic) and that of 2 is P212121 (orthorhombic). The electrochemical electron transfer study in MeCN solutions shows a one-electron reductive response presumably due to a metal(III)–metal(II) couple.  相似文献   

8.
Cadmium(II) complexes, catena-poly[bis(thiocyanato-κN)bis(N-methylthiourea)cadmium(II)], [Cd(Metu)2(NCS)2]n (1) and dicyanidobis(N-methylthiourea)cadmium(II), [Cd(Metu)2(CN)2] (2) were prepared and their structures were determined by single crystal X-ray analysis. In 1, the cadmium(II) ion is bound to four sulfur atoms of bridging Metu ligands and two nitrogen atoms of thiocyanate adopting a distorted octahedral environment. In 2, the geometry around cadmium is distorted tetrahedral attained by two cyanide ions and two methylthiourea molecules bound through the sulfur atoms. The crystal structures of both complexes show intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data were discussed in terms of the nature of bonding.  相似文献   

9.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

10.
《Journal of Coordination Chemistry》2012,65(16-18):2800-2813
Abstract

C6H5Se?Na+ (generated in situ by NaBH4 reduction of (C6H5Se)2) on reaction with ClC3H6C4H8N2ClC6H5 under N2 atmosphere results in C6H5SeC3H6C4H8N2ClC6H5 (L) as a cream-colored solid. Its 1:1 metal complexes having the general formula [MLX2], where M?=?Zn, Cd, Hg, and X?=?Cl, have been prepared. Ligand L and its complexes 1–3 are characterized on the basis of physico-chemical and spectral (FT-IR, ESI Mass, 1H, 13C, DEPT 135° 13C {1H}, and 77Se{1H} NMR) studies. IR spectroscopy revealed that L is coordinated solely through selenium and nitrogen to zinc, cadmium, and mercury ions forming a six-membered chelate ring around M(II) ions. Elemental analysis measurements along with 1H, 13C, DEPT 135° 13C {1H}, and ESI-mass data also confirm the bidentate coordination mode of the ligand. Moreover, the coordination from selenium atom is also supported by the downfield shift of signal in 77Se{1H} NMR spectroscopy. Using DFT-based optimization of structures, the HOMO-LUMO energy gaps and molecular electrostatic potential surface of ligand L and complexes 1–3 were theoretically calculated at the B3LYP/LANL2DZ level of theory. Ligand L and complexes 1–3 display significant antibacterial and antifungal activity.  相似文献   

11.
Two new mononuclear Ni(II) complexes, [Ni(C10H12O2N2)2(C5H5N)2](NO3)2 (1) and [Ni(C10H12O2N2)2(H2O)2](NO3)2 (2), have been synthesized and characterized by elemental analysis, infrared, UV-Vis spectroscopy, and single-crystal X-ray diffraction. The coordination geometry around each Ni(II) can be described as an octahedron with each Ni(II) coordinated to two imino nitrogens, two carbonyl oxygens, and two solvent molecules (pyridine for 1 and water for 2). In the synthesis, the original ligand changes from o-carboxybenzaldehyde salicyloylhydrazone (C15H12O4N2) into acetone salicyloylhydrazone (C10H12O2N2). The thermal stability of the complexes at three different heating rates (β = 5, 10, and 15°C min?1) show that all the complexes exhibit three thermal decomposition stages and their thermal stability is 1 > 2. Complexes 1 and 2 both display DNA binding ability, ascertained by UV-Vis titration.  相似文献   

12.
Two new uranyl complexes [UO2(DPDPU)2(NO3)2](C6H5CH3) (1) and [UO2(PMBP)2 (DPDPU)](CH3C6H4CH3)0.5 (2), (DPDPU?=?N,N′-dipropyl-N,N′-diphenylurea, HPMBP?= 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized. The coordination geometry of the uranyl atom in 1 is distorted hexagonal bipyramidal, coordinated by two oxygen atoms of two DPDPU molecules and four oxygen atoms of two bidentate nitrate groups. The coordination geometry of the uranyl atom in 2 is distorted pentagonal bipyramidal, coordinated by one oxygen atom of one DPDPU molecule and four oxygen atoms of two chelating PMBP molecules.  相似文献   

13.
14.
A new series of Cu(II), Ni(II), and Co(II) complexes have been synthesized from 3-formylchromoniminopropylsilatrane (C19H24O5N2Si) (2) and 3-formylchromoniminopropyltriethoxysilane (1). Silatrane ligand (C19H24O5N2Si) (2) has been synthesized by the reaction between 3-aminopropyltriethoxysilane and 3-formylchromone followed by a treatment with triethanolamine. The nature of bonding and the geometry of the complexes have been deduced from elemental analyses, magnetic susceptibility, infrared, electronic, 1H NMR, 13C NMR, and ESR spectral studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square planar geometry for Cu(II) and Ni(II) and tetrahedral geometry for Co(II). The redox behavior of copper complexes was studied by cyclic voltammetry. The biological activity of the ligand and metal complexes has been studied on Klebsiella pneumoniae, Staphylococcus aureus, Escherichia Coli, and Bacillus subtilis by the well diffusion method using acetonitrile as solvent. The zone of inhibition values were measured at 37°C for 24 h. Antimicrobial screening tests show better results for the metal complexes than the ligand.  相似文献   

15.
Two new potentially hexadentate Schiff bases, [H2L1] and [H2L2], were prepared by condensation of 2-(3-(2-aminophenoxy)naphthalen-2-yloxy)benzenamine with 3,5-di-tert-butyl-2-hydroxy benzaldehyde and o-vanillin, respectively. Reaction of these ligands with cobalt(II) chloride, copper(II) perchlorate, and zinc(II) nitrate gave complexes ML. The ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution state investigations show that the complexes are neutral. Molecular structures of [CuL1], [CoL1]?·?C7H8, and [ZnL2]?·?CH3CN, which have been determined by single-crystal X-ray diffraction, indicate that [CuL1] and [ZnL2]?·?CH3CN display distorted square planar and distorted trigonal-bipyramidal geometry, respectively; the geometry around cobalt in [CoL1]?·?C7H8 is almost exactly between trigonal bipyramidal and square pyramidal. The synthesized ligands and their complexes were screened for their antibacterial activities against eight bacterial strains and the ligands and complexes have antibacterial effects. The most effective ones are [CuL2] against Proteus vulgaris, Serratia marcescens, Staphylococcus subtilis, [H2L1] against S. subtilis, and [H2L2] against S. subtilis.  相似文献   

16.

Reaction of the ligand 2,2′-diphenyl-4,4′-bithiazole (DPBTZ) with Hg(SCN)2, Tl(NO3)3, CuCl, and PdCl2 gives complexes with stoichiometry [Hg(DPBTZ)(SCN)2], [Tl(DPBTZ)(NO3)3], [Cu(DPBTZ)(H2O)Cl], and [Pd(DPBTZ)Cl2]. The new complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of [Hg(DPBTZ)(SCN)2] determined by X-ray crystallography. The Hg atom in the title monomeric complex, (2,2′-diphenyl-4,4′-bithiazole)mercury(II)bisthiocyanate, [Hg(C18H12N2S2)(SCN)2], is four-coordinate having an irregular tetrahedral geometry composed of two S atoms of thiocyanate ions [Hg-S 2.4025(15) and 2.4073(15) Å] and two N atoms of 2,2′-diphenyl-4,4′-bithiazole ligand [Hg-N 2.411(4) and 2.459(4) Å]. The bond angle S(3)-Hg(1)-S(4) of 147.46(5)° has the greatest derivation from ideal tetrahedral geometry. Intermolecular interaction between Hg(1) and two S atoms of two neighboring molecules, 3.9318(15) and 3.9640(18) Å, make the Hg(1) distort from a tetrahedron to a disordered octahedron. The attempts for preparation complexes of Tl(I), Pb(II), Bi(III), Cd(II) ions with 2,2′-diphenyl-4,4′-bithiazole ligand were not successful and also the attempts for preparation complexes of 4,4′,5,5′-tetraphenyl-2,2′-bithizole ligand with Cu(II), Ni(II), Co(II), Co(III), Mn(II), Mn(III), Fe(II), Fe(III), Cr(III), Zn(II), Tl(III), Pb(II), Hg(II), Cu(I), Pd(II) were not successful. This point can be regarded as the initial electron withdrawing of phenyl rings and also their spatial steric effects.  相似文献   

17.
An aryldimethylalane‐appended analogue of 1,1′‐bis(diphenylphosphino)ferrocene, FcPPAl, was prepared, and reaction with [Pt(nb)3] (nb=norbornene) afforded [Pt(η2‐nb)(FcPPAl)] ( 1 ). Heating a solution of 1 to 80 °C resulted in crystallization of [{Pt(FcPPAl)}2] ( 2 ), whereas treatment of 1 with C2H4, C2Ph2, H2, or CO provided [PtL(FcPPAl)] [L=C2H4 ( 3 ), C2Ph2 ( 4 )], [PtH2(FcPPAl)] ( 5 ), and [Pt(CO)(FcPPAl)] ( 6 ). In all complexes, the FcPPAl ligand is coordinated through both phosphines and the alane. Whereas 2 adopts a T‐shaped geometry at platinum, 3 – 5 are square‐pyramidal, and 6 is distorted square‐planar. The hydride and carbonyl complexes feature unusual multicenter bonding involving platinum, aluminum, and a hydride or carbonyl ligand.  相似文献   

18.
Pyridil bis(N(4)‐substituted thiosemicarbazones) have been prepared in which the substituents in place of the NH2 group in the thiosemicarbazone moieties are piperidinyl (H2Plpip), hexamethyleneiminyl (H2Plhexim), diethylaminyl (H2Pl4DE), and dipropylaminyl (H2Pl4DP). IR, electronic, mass, and ESR spectra of their copper(II) complexes are reported. Crystal structure determinations of H2Pl4DE and three of the copper(II) complexes of formula [Cu(Plpip)], [Cu(Plhexim)] and [Cu(Pl4DE)]2 · 2[Cu(Pl4DE)], are included. H2Pl4DE lacks hydrogen bonding between the thiosemicarbazone moieties, but each moiety is in the Z configuration form with hydrogen bonding from the thiosemicarbazone moieties to the pyridyl nitrogen atoms. The crystal used for the structure determination of [Cu(Plhexim)] was isolated from an electrochemical preparation. In all the new compounds the deprotonated ligands are N,N,S,S‐tetradentate, coordinating to the copper(II) centre through their azomethine nitrogen atoms and their thiocarbonyl sulfur atoms.  相似文献   

19.
以2-甲基-4-噻唑甲酸(HMTZA,C5H5NO2S)为配体合成了3种新型过渡金属配合物[Co(MTZA)2(H2O)2]·3H2O(1),[Cu(MTZA)2(H2O)]·2H2O(2)和[Zn(MTZA)2(H2O)2]·3H2O(3)。对配合物进行了元素分析、红外光谱和热重分析表征,用单晶X射线衍射方法测定了配合物的晶体结构。结果表明,配合物1属于单斜晶系,空间群为P21/n,中心金属Co(Ⅱ)离子的配位数为6,配位构型为略为变形的八面体;配合物2属于三斜晶系,空间群为P1,Cu(Ⅱ)离子的配位构型是一个畸变的四方锥;配合物3属单斜晶系,空间群为P21/n,中心金属Zn(Ⅱ)离子的配位构型为畸变的八面体。用溴化乙锭荧光探针法测定了配体和配合物与DNA作用的荧光光谱,结果显示无论配体还是配合物均能使EB-DNA复合体系发生不同程度的荧光猝灭,且配合物的作用强度远大于配体。  相似文献   

20.
The structure of a pincer ligand consists of a backbone and two `arms' which typically contain a P or N atom. They are tridentate ligands that coordinate to a metal center in a meridional configuration. A series of three iron complexes containing the pyrrole‐based PNP pincer ligand 2,5‐bis[(diisopropylphosphanyl)methyl]pyrrolide (PNpyrP) has been synthesized. These complexes are possible precursors to new iron catalysts. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}carbonylchlorido(trimethylphosphane‐κP )iron(II), [Fe(C18H34NP2)Cl(C3H9P)(CO)] or [Fe(PNpyrP)Cl(PMe3)(CO)], (I), has a slightly distorted octahedral geometry, with the Cl and CO ligands occupying the apical positions. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}chlorido(pyridine‐κN )iron(II), [Fe(C18H34NP2)Cl(C5H5N)] or [Fe(PNpyrP)Cl(py)] (py is pyridine), (II), is a five‐coordinate square‐pyramidal complex, with the pyridine ligand in the apical position. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}dicarbonylchloridoiron(II), [Fe(C18H34NP2)Cl(CO)2] or [Fe(PNpyrP)Cl(CO)2], (III), is structurally similar to (I), but with the PMe3 ligand replaced by a second carbonyl ligand from the reaction of (II) with CO. The two carbonyl ligands are in a cis configuration, and there is positional disorder of the chloride and trans carbonyl ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号