首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The o‐substituted hybrid phenylphosphines, PPh2(o‐C6H4NH2) and PPh2(o‐C6H4OH), could be deprotonated with LDA or n‐BuLi to yield PPh2(o‐C6H4NHLi) and PPh2(o‐C6H4OLi), respectively. When added to a solution of (η5‐C5H5)Fe(CO)2I at room temperature, these two lithiated reagents produce a chelated neutral complex 1 (η5‐C5H5)Fe(CO)[C(O)NH(o‐C6H4)PPh2C,P‐η2] for the former and mainly a zwitterionic complex 2 , (η5‐C5H5)Fe+(CO)2[PPh2(o‐C6H4O?)] for the latter. Complex 1 could easily be protonated and then decarbonylated to give 4 [(η5‐C5H5)Fe(CO){NH2(o‐C6H4)PPh2N,P‐η2}+]. Complexes 1 and 4‐I have been crystallographically characterized with X‐ray diffraction.  相似文献   

2.
Schiff bases of 2‐(phenylthio)aniline, (C6H5)SC6H4N?CR (R = (o‐CH3)(C6H5), (o‐OCH3)(C6H5) or (o‐CF3)(C6H5)), and their palladium complexes (PdLCl2) were synthesized. The compounds were characterized using 1H NMR and 13C NMR spectroscopy and micro analysis. Also, electrochemical properties of the ligands and Pd(II) complexes were investigated in dimethylformamide–LiClO4 solution with cyclic and square wave voltammetry techniques. The Pd(II) complexes showed both reversible and quasi‐reversible processes in the ?1.5 to 0.3 V potential range. The synthesized Pd(II) complexes were evaluated as catalysts in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

4.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

5.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

6.
Hydrothermal reactions of Pb(NO3)2 and 3-fluorophthalic acid (H2Fpht) in the absence or presence of 2,2′-bipyridine (bpy) gave two coordination polymers: Pb5(Fpht)4(Fba)2 (1) and [Pb2(Fpht)2(bpy)(H2O)]·3H2O (2). The 3-fluorobenzoic acid (HFba) results from an in situ decarboxylation of H2Fpht. Solid 1 displays a 2-D structure, comprising center-related hexanuclear [Pb3(COO)6]2 units. There are three crystallographically different Pb(II) ions and two different ligands, Fpht and Fba. The Fpht ligands adopt μ6?:?η5η3 and μ6?:?η3η4 unusual bridging coordination modes. A 3-D supramolecular architecture is formed via C–H?F hydrogen bonds. Solid 2 possesses a 1-D chain structure, comprising center-related tetranuclear [Pb2(COO)4]2 units. There are two crystallographically different Pb(II) ions. The Fpht ligands adopt μ3?:?η2η3 and μ4?:?η3η3 bridging coordination. The free water molecules form (H2O)3 clusters to link the 1-D chain by hydrogen bonds. A 3-D supramolecular assembly is constructed via hydrogen bonds between the free water and the F of Fpht ligands. Fluorescence of the complexes originates from π*–π transitions of the ligands.  相似文献   

7.
Five Zn(II)-ferrocenyl carboxylate complexes, {[Zn(OOCClH3C6Fc)(η 2OOCClH3C6Fc)(dpa)]?·?(H2O)} (1), [Zn(η 2-OOCClH3C6Fc)2(2,2′-dip)]?·?(H2O)0.25} (2), {[Zn(η-OOCClH3C6Fc)2(bix)]2?·?(THF)} (3), [Zn(η-OOCClH3C6Fc)2?·?(Hfcz)] n (4) and {[Zn(η-OOCClH3C6Fc)2(H2L1)]?·?(DMF)2} n (5) [dpa?=?2,2′-dipyridylamine, 2,2′-dip?=?2,2′-bipyridine, bix?=?1,4-bis(imidazol-1-ylmethyl)benzene, Hfcz?=?α-(2,4-difluorophenyl)-α-(1H-1,2,4-triazol-l-ylmethyl)-1H-1,2,4-triazole-l-ethanol, H2L1?=?N,N′-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide, Fc?=?ferrocene, FcC6H3ClCOONa?=?sodium 2-chloro-4-ferrocenylbenzoic], have been synthesized and characterized. Single-crystal X-ray analysis reveals that 1 and 2 are mononuclear structures, 3 is a dimer, and 4 and 5 are 1-D structures. The five complexes exhibit some differences in their conformations, which can be attributed to the influence of adjuvant ligands. Notably, various π–π interactions as well as CH/π interactions are discovered in 15, and they have significant contributions to self-assembly. The electrochemical properties of 15 indicate that half-wave potentials shift to positive potential compared with that of 2-chloro-4-ferrocenylbenzoic acid.  相似文献   

8.
Six new coordination complexes, [Cd(η 2-OOCCH=(CH3)CFc)2(bix)]2·(CH3OH)0.5 (1), [Zn(η 2-OOCCH=(CH3)CFc)(η 1-OOCCH=(CH3)CFc)(bix)]2·(H2O)0.5 (2), [Zn(η 2-OOCCH=(CH3)CFc)2(pbbm)]2·(CH3OH)2 (3), {[Mn(η 1-OOCCH=(CH3)CFc)2(bbbm)(H2O)2]·(CH3OH)3}n (4), {[Cd(η 1-OOCCH=(CH3)CFc)2(bbbm)]·(CH3OH)2}n (5), and [Cd(η 2-OOCCH=(CH3)CFc)2(pmbbm)]n (6) {Fc?=?(η 5-C5H4)Fe(η 5-C5H4), bix?=?1,4[bis(imidazol-1-ylmethyl)benzene], pbbm?=?1,1′-[(1,4-propanediyl)bis-1H-benzimidazole], bbbm?=?1,1′-[(1,4-butanediyl)bis-1H-benzimidazole)], pmbbm?=?1,1′-[(1,4-pentanediyl)bis-1H-benzimidazole]}, were prepared and characterized. X-ray crystallographic analysis reveals that 1–3 are dimers bridged by bix and pbbm. Complexes 4–6 are one-dimensional (1-D) structures bridged by bbbm and pmbbm, respectively. Various ππ interactions were discovered in 1–6 that make significant contributions to molecular self-assembly. Solution differential pulse voltammetry of 1–6 indicates that the half-wave potentials of the ferrocenyl moieties in these complexes shift to positive potential compared with that of 3-ferrocenyl-2-crotonic acid.  相似文献   

9.
Using 4-methylbenzenethiolates of Zn or Cd as precursors and 4,4′-bipyridine (4,4′-bpy) as bridges, we have synthesized three new Zn(II)/Cd(II) coordination polymers, {[Cd(4,4′-bpy)2(NCS)2] · 2(SC6H4CH3-4)2} n (1), {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · DMF} n (2) and {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · H2O · 0.5CH3OH} n (3). Compound 1 is a 2-D sheet-like square polymer in which four 4,4′-bpy ligands and two isothiocyanate ligands complete the octahedral Cd(II) coordination sphere. Compounds 2 and 3 have similar coordination around Zn(II), but have different polymer structures. In 2, Zn(II) centers are linked via a bidentate 4,4′-bipyridine to form 1-D twisted arched chains, which is a new structural type for Zn(II). Compound 3 has 1-D zigzag chains. The 2-D sheets in 1 and 1-D chains in 2 and 3 are assembled via intermolecular C–H ··· π and C–H ··· S interactions into 3-D supramolecular networks. C–H ··· S interactions are a vital factor in constructing the sulfur-containing coordination polymers. Different coordination modes and packing schemes in 13 show that the guest molecule has a critical influence on formation of polymers.  相似文献   

10.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

11.
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare‐earth metal–carbon bonding. The crystal structures of (18‐crown‐6)bis(tetrahydrofuran‐κO)sodium bis(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C4H8O)2(C12H24O6)][Sc(C26H20)2]·2C4H8O or [Na(18‐crown‐6)(THF)2][Sc(η6‐C2Ph4)2]·2(THF), ( 1b ), (η5‐1,3‐diphenylcyclopentadienyl)(tetrahydrofuran‐κO)(η6‐1,1,2,2‐tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C17H13)(C26H20)(C4H8O)]·0.5C7H8 or [(η5‐1,3‐Ph2C5H3)Sc(η6‐C2Ph4)(THF)]·0.5(toluene), ( 5b ), poly[[(μ2‐η33‐anthracenediyl)bis(η6‐anthracenediyl)bis(η5‐1,3‐diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K2Sc2(C14H10)3(C17H13)2(C4H8O)4]·C4H8O}n or [K(THF)2]2[(1,3‐Ph2C5H3)2Sc2(C14H10)3]·THF, ( 6 ), and 1,4‐diphenylcyclopenta‐1,3‐diene, C17H14, ( 3a ), have been established. The [Sc(η6‐C2Ph4)2] complex anion in ( 1b ) contains the tetraphenylethylene dianion in a symmetrical bis‐η3‐allyl coordination mode. The complex homoleptic [Sc(η6‐C2Ph4)2] anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1H and 13C{1H}, and 2D COSY 1H–1H and 13C–1H NMR data are presented for M[Sc(Ph4C2)2xTHF [M = Na and x = 4 for ( 1a ); M = K and x = 3.5 for ( 2a )] in THF‐d8 media. Complex ( 5b ) exhibits an unsymmetrical bis‐η3‐allyl coordination mode of the dianion, but this changes to a η4 coordination mode for (1,3‐Ph2C5H3)Sc(Ph4C2)(THF)2, ( 5a ), in THF‐d8 solution. A 45Sc NMR study of ( 2a ) and UV–Vis studies of ( 1a ), ( 2a ) and ( 5a ) indicate a significant covalent contribution to the Sc—Ph4C2 bond character. The unique Sc ate complex, ( 6 ), contains three anthracenide dianions demonstrating both a η6‐coordination mode for two bent ligands and a μ2‐η33‐bridging mode of a flat ligand. Each [(1,3‐Ph2C5H3)2Sc2(C14H10)3]2− dianionic unit is connected to four neighbouring units via short contacts with [K(THF)2]+ cations, forming a two‐dimensional coordination polymer framework parallel to (001).  相似文献   

12.
The design and preparation of crystalline polymeric materials has attracted increasing attention due to their diverse applications as functional materials in gas storage, separation, catalysis, sensing and photoluminescence. The judicious selection of organic linkers is critical for varying the coordination behaviour of the metal ions and determining the overall characteristics of the networks. A new adenine‐based ZnII coordination polymer, [Zn(C6H2O4S)(C5H5N5)]n or [Zn(tdc)(9H‐ade)] (H2tdc is thiophene‐2,5‐dicarboxylic acid and ade is adenine), has been prepared hydrothermally and the crystal structure exhibits in its packing two‐dimensional (4,4) grid sheets parallel to the ab plane, featuring two distinct square cavities delimited by the two types of ligands and the ZnII ions with the dimensions 6.6 × 6.6 and 10.2 × 10.2 Å (based on the Zn...Zn distance). The title complex shows enhanced photoluminescence at 378 nm compared to the free ligands, suggesting that the coordination of H2tdc or adenine to the metal centre effectively increases the rigidity of the ligands and reduces the energy loss by radiative decay of intraligand excited states.  相似文献   

13.
Three compounds, [Zn2L2(4,4′-bpt)2] n (1), [Cd2L2(3,4′-bpt)(H2O)2] n (2) and {[CoL(3,3′-bpt)(H2O)]?H2O} n (3) (L?=?3-Cl-1,2-benzenedicarboxylate dianion, 4,4′-bpt?=?1H-3,5-bs(4-pyridyl)-1,2,4-itriazole, 3,4′-bpt?=?1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole and 3,3′-bpt?=?1H-3,5-bis(3-pyridyl)-1,2,4-triazole), based on three positionally isomeric triazole-bipyridine ligands, were synthesized. Structural analyses of 1–3 reveal diverse 2-D network structures, which are based on different [ML] n (M?=?Zn, Cd, Co) chains. In the [ZnL] n chains of 1, the carboxylic groups of L connect the adjacent Zn(II) centers with a monodentate bridging coordination mode (μ21 ?/? η1 ). In 2, [CdL] n is a double chain connected by the carboxylic groups of L with μ31 ?/? η22 and μ31 ?/? η1 ?/? η2 bridges. The [CoL] n chains of 3 are formed by the carboxylic groups of L with the μ21 ?/? η2 coordination mode. The powder X-ray diffraction and the thermal stability of 1–3, the luminescent properties of 1 and 2, and the magnetic behavior of 3 have been briefly investigated.  相似文献   

14.
The trianionic heptadentate ligand, (Z)-3-(5′-bromosalicylhydrazinocarbonyl) propenoic acid ((Z)-H4bshcpa), has been synthesized in good yield and reacted with FeCl3?·?6H2O to produce [FeIII 6(C12H8N2O5Br)6(H2O)2(CH3OH)4]?·?8H2O?·?8CH3OH. The complex has been characterized by single-crystal X-ray diffraction. In the self-assembly process the ligand was esterified and transferred into (Z)-methyl 3-(5′-bromosalicylhydrazinocarbonyl) propenoate ((Z)-H3mbshcp). In the crystal structure, the neutral Fe(III) complex contains an 18-membered metallacrown ring consisting of six Fe(III) and six trianionic ligands. The 18-membered metallacrown ring is formed by six structural moieties of the type [Fe(III)–N–N]. Due to the meridional coordination of the ligands to Fe3+, the ligands enforce stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The metallacrown can be treated with SnCl2 to obtain purified ester. In addition, we have also obtained reduced esterified ligand, methyl 3-(5′-bromosalicylhydrazinocarbonyl) propanoate (H3mbshcp), with Zn powder as reductant.  相似文献   

15.
Two coordination polymers [Zn(L)2(4,4′-bipy)2] n (4,4′-bipy = 4,4′-bipyridine) (1) and [Pb(η 2-L)(µ3-η 2-CH3COO)(H2O)] n (2) have been prepared by the reaction of 3-(4-carboxyphenylhydrazono)pentane-2,4-diketone (HL) with zinc(II) or lead(II) in solution. Polymer 1 shows an infinite zigzag chain, in which Zn(II) are linked by 4,4′-bipy bridges with carboxylate of L? monodentate to Zn(II). In 2, Pb(II) are bridged by tetradentate µ3-η 2-CH3COO? to form a linear 1-D chain, and each Pb(II) is chelated by carboxylate of L?. Their molecular structures have been characterized by elemental analysis, infrared, and single-crystal X-ray diffraction. Thermal and fluorescent properties of the two complexes have been investigated.  相似文献   

16.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

17.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

18.
Four coordination polymers, [Zn(o-bdc)(bth)0.5(H2O)] n (1), [Cd(o-bdc)(bth)0.5(H2O)] n (2), [Zn(m-bdc)(bth)] n (3), and [Cd(p-bdc)(bth)?·?(H2O)2] n (4) (where o-bdc?=?1,2-benzenedicarboxylate, m-bdc?=?1,3-benzenedicarboxylate, p-bdc?=?1,4-benzenedicarboxylate, and bth?=?1,6-bis(triazol)hexane), have been hydrothermally synthesized and structurally characterized. Both 1 and 2 are isostructural, featuring two binodal architectures: (63)(65·8) topology in terms of o-bdc and ZnII/CdII as three- and four-connected nodes. Complex 3 shows a 2-D (4,4) network with the Zn?···?Zn?···?Zn angle of 57.84°, whereas 4 exhibits planar 2-D (4,4) network. These 2-D networks of 3 and 4 are extended by supramolecular interactions, such as CH?···?π/π–π stacking and hydrogen-bonding into 3-D architecture. A structural comparison of these complexes demonstrates that the dicarboxylate building blocks with different dispositions of the carboxyl site play a key role in governing the coordination motifs as well as 3-D supramolecular lattices. Solid-state properties such as photoluminescence and thermal stabilities of 14 have also been studied.  相似文献   

19.
In the title cadmium(II) coordination polymer, poly[tri‐μ4‐adipato‐bis(2‐phenyl‐1H‐1,3,7,8‐tetraazacyclopenta[l]phenanthrene‐κ2N7,N8)tricadmium(II)], [Cd3(C6H8O4)3(C19H12N4)2]n, one of the Cd atoms is in a distorted pentagonal bipyramidal coordination environment, surrounded by five O atoms from three adipate (adip) ligands and two N atoms from one 2‐phenyl‐1H‐1,3,7,8‐tetraazacyclopenta[l]phenanthrene (L) ligand. A second Cd atom occupies an inversion center and is coordinated by six O atoms from six adip ligands in a distorted octahedral geometry. The carboxylate ends of the adip ligands link CdII atoms to form unique trinuclear CdII clusters, which are further bridged by the adip linkers to produce a two‐dimensional layer structure. Topologically, each trinuclear CdII cluster is connected to four others through six adip ligands, thus resulting in a unique two‐dimensional four‐connected framework of (4,4)‐topology. This work may help the development of the coordination chemistry of 1,10‐phenanthroline derivatives.  相似文献   

20.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号