首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some Schiff-base complexes of UO2(II) ion derived from 2-hydroxyacetophenone and aliphatic diamines under reflux conditions have been synthesized. The resulting ligands and their complexes have been characterized by elemental analyses (C, H, N), infrared, 1H NMR, 13C NMR and mass spectra. In these efficient reactions, Schiff-base complexes with important applications in analytical and organic chemistry are prepared.  相似文献   

2.
Two symmetrical and asymmetrical Zn(II) complexes of a pentadentate (N5) macrocyclic Schiff-base ligands, were prepared via templated [1 + 1] cyclocondensation of 2,6-diacetylpyridine with two different amines containing piperazine moiety. The complexes have been characterized by a variety of methods including, IR, FAB mass spectrometry, elemental analysis and conductivity measurements. The crystal structure of the asymmetric complex, [ZnL1Br]ClO4 was determined by X-ray diffraction. It is shown that in the solid state the complex adopts a distorted pentagonal–pyramidal geometry, with the macrocycle in the pentagonal plane and the bromide ion in the axial position.  相似文献   

3.
Novel series of nonionic Schiff bases was synthesized and characterized using microelemental analysis, FTIR and (1)H NMR spectra. These Schiff bases and their complexes with Cu and Fe have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Pseudomonas aureus, Candida albi, Bacillus subtilis and Escherichia coli and their fungicidal activity against Aspcrgillus niger and Aspcrgillus flavus. The results of the biocidal activities showed high potent action of the synthesized Schiff bases towards both bacteria and fungi. Furthermore, complexation of these Schiff bases by Cu(II) and Fe(III) show the metal complexes to be more antibacterial and antifungal than the Schiff bases. The results were correlated to the surface activity and the transition metal type. The mode of action of these complexes was discussed.  相似文献   

4.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

5.
Some new unsymmetrical tetradentate Schiff-base ligands, (N-salicylidene-N′-pyrrolidene)-1,2-ethylenediamine(H2salpyren) (H2L1), (H2Mesalpyren) (H2L2), (H2phsalpyren) (H2L3), (N-salicylidene-N′-pyrrolidene)-1,3-propylenediamine (H2salpyrpd) (H2L4), (H2Mesalpyrpd) (H2L5), (H2phsalpyrpd) (H2L6) and their Ni(II) and Cu(II) complexes were synthesized and characterized by elemental analyses, IR, UV-Vis, 1H NMR and mass spectra and magnetic moments. Possible structures of these complexes have been proposed. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength 0.1?M (NaClO4), at 25°C in methanol.  相似文献   

6.
The metal templated Cd(II) cyclocondensation of 2,6-diacetylpiridine or 2,6-pyridinedicarbaldehyde and two different amines containing piperazine moieties have been investigated. The resulting ligands, L1 and L2 are 16- and L3 and L4 17-membered pentaaza macrocycles. The complexes have been characterized by a variety of methods including IR, 1H, 13C NMR, DEPT, COSY(H,H), HMQC(H,C), FAB spectrometry and conductivimetry measurements. The crystal structures of [CdL2Cl](CH3OH)ClO4 (2) and [CdL4(NO3)(H2O)]ClO4 (4) have been also determined, and it was shown that the geometry of the Cd(II) ion in the complexes is slightly distorted pentagonal pyramidal and pentagonal bipyramidal, respectively. The gas-phase structures of ligands, L2 and L4 and their Cd(II) complexes have also theoretically studied.  相似文献   

7.
Five-coordinate Schiff-base Zn complexes (1,2-cyclohexanediamino-N,N′-bis(salicylidene)) zinc-pyridine 1 and (1,2-cyclohexanediamino-N,N′-bis(3,5-di-tert-butylsalicylidene)) zinc-pyridine 2 were synthesized and the structures of 1 and 2 have been determined by single-crystal X-ray analysis. All Zn atoms are five-coordinate in both structures. Both complexes exhibit interesting structures based on intermolecular π–π stacking and hydrogen bond interactions. Complex 1 has a one-dimensional molecular chain structure via π–π stacking interaction, while complex 2 has an interesting lattice structure (with cavities with dimensions 10.9?×?6.9?Å) formed through intermolecular π–π stacking and hydrogen bond interactions. 1 and 2 are compared and characterized by MS, elemental analysis, IR, UV-Vis and Photoluminescence (PL). Fluorescence spectra show that the maximal emission wavelength of 1 and 2 are 454?nm, and 480?nm, respectively, upon radiation by UV light. Cyclic voltammetry performed on 1 and 2 indicate a dependence of the cathodic potentials upon conformational and electronic effects. Electronic spectral properties of 1 and 2 were studied by TD-DFT methods. The fluorescent emission of these complexes originates from ligand-centred π–π? transitions. The Zn (II) centres play a key role in enhancing the fluorescent emission of the ligands.  相似文献   

8.
Neutral complexes of Co(II), Ni(II), Cu(II), and Zn(II) have been synthesized from the Schiff bases derived from 3-nitrobenzylidene-4-aminoantipyrine and aniline (L1)/p-nitro aniline (L2)/p-methoxy aniline (L3) in the molar ratio 1 : 1. The structural features have been determined from microanalytical, IR, UV-Vis, 1H-NMR, mass, and ESR spectral data. The Cu(II) complexes are square planar, while Co(II), Ni(II), and Zn(II) complexes are tetrahedral. Magnetic susceptibility measurements and molar conductance data provide evidence for the monomeric and neutral nature of the complexes. The X-band ESR spectrum of Cu(II) complexes at 300 and 77 K were recorded. The electrochemical behavior of the complexes in MeCN at 298 K was studied. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans by the well-diffusion method. Comparison of the inhibition values of the Schiff bases and their complexes indicate that the complexes exhibit higher antimicrobial activity.  相似文献   

9.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-mercaptoethylamine is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-mercaptoethylamine leads to 2,9-bis(2-ethanthiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with manganese, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptoethyl)-2-azaethene]-1,10-phenanthroline (L). The [M(L)Cl2] complexes [where M = Mn(II), Ni(II), Cu(II) and Zn(II) ions] were characterized by physical and spectroscopic measurements which indicated that the ligand is a tetradentate N4 chelating agent.  相似文献   

10.
Two Ti(IV) complexes have been synthesized with biologically active ligands. These ligands and their functional groups were carefully designed and selected from well-known anticancer drugs because of substituents on the aromatic ring. The ligands were prepared by condensation of a mixture of phenylenediamine and the appropriate aldehyde, vanillin, and 3,4-dimethoxybenzaldehyde. The structures of ligands and complexes have been confirmed by spectroscopic data, i.e., IR, 1H NMR, 13C NMR, electronic spectra, elemental (C, H, and N) analyses, magnetic and conductance measurements. Anticancer, DNA, and antibacterial activities are reported. Some compounds showed promising activity against Hela and PC3 cells.  相似文献   

11.
A series of Co(II) tetraoxodithiatetraaza macrocyclic complexes ([18]aneN4S2, [20]aneN4S2, Bzo2[18]aneN4S2 and Bzo2[20]aneN4S2) have been encapsulated in the nanopores of zeolite Y by template condensation reaction. Co(II) complexes with tetraoxodithiatetraaza macrocyclic ligand were entrapped in the nanopores of zeolite Y by a two-steps process in the liquid phase: (i) ion-exchange of [bis(diamine)cobalt(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); [Co(N–N)2]2+–NaY; in the nano-cavity of the zeolite, and (ii) in situ template condensation of the cobalt(II) precursor complex with thiodiglycolic acid. The mode of bonding and overall geometry of the complexes and new host/guest nanocomposite materials ([Co([18]aneN4S2)]2+–NaY, [Co([20]aneN4S2)]2+–NaY, [Co(Bzo2[18]aneN4S2)]2+–NaY, [Co(Bzo2[20]aneN4S2)2+–NaY) has been inferred through FT-IR, DRS and UV–Vis spectroscopic techniques, BET technique, molar conductance and magnetic moment data, XRD and elemental analysis, as well as nitrogen adsorption. The average number of encapsulated Co complexes per nano-cavity was determined to be 0.33 for the Co complexes–NaY. An octahedral geometry around the cobalt(II) ion is suggested for the complexes and new host/guest nanocomposite materials.  相似文献   

12.
Highly rapid and efficient electrophilic substitution reactions of indoles with various aldehydes and ketones were carried out using I2 in CH3CN to afford the corresponding bis(indolyl)methanes in excellent yields.  相似文献   

13.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

14.
Three polyamine ligands of N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2-diamine (L1), N1-(2-nitrobenzyl)-N1-(2-aminoethyl)propane-1,3-diamine (L2) and N1-(2-nitrobenzyl)-N1-(3-aminopropyl)propane-1,3-diamine (L3) were synthesized and their cyclocondensation with 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde (L4) in the presence of various metal(II) ions was examined. These reactions only in the presence of a stoichiometric amount of cadmium(II) nitrate gave the related cadmium(II) macrocyclic Schiff-base complexes. In all the other cases no cyclic complexes have been obtained and metal(II) polyamines were the only products. The complexes have been studied with IR, 1H NMR, 13C NMR, DEPT, COSY, HMQC and microanalysis. The crystal structures of [Cd(NO3)(L5)(μ-NO3)Cd(NO3)(L5)]0.5Cd(NO3)4 (1) and [CdL5(NO3)(CH3OH)]ClO4 (2) have been also determined.  相似文献   

15.
Four new d10 heterometallic coordination polymers have been obtained using three Schiff-base ligands, zinc(II) nitrate, and dicyanometallates: 1[{Zn3(Salen)2}{μ-Au(CN)2}2] (1); 1[Zn(Saldmen){μ-Ag(CN)2}]·2H2O (2); 1[Zn(Salampy){μ-Ag(CN)2}] (3); 1[Zn(Salampy){μ-Au(CN)2}] (4). The Schiff bases are obtained from condensation of salicylaldehyde with ethylenediamine (H2Salen); N,N-dimethyl-ethylenediamine (HSaldmen) and, respectively, 2-aminomethyl-pyridine (HSalampy). The dicyanometallates are K[Ag(CN)2] and K[Au(CN)2]. The compounds were characterized by X-ray single-crystal diffraction, infrared spectroscopy, UV–vis spectroscopy, and elemental analysis. In compound 1, the homotrimetallic units, {Zn3(salen)2}2+, are connected by two [Au(CN)2]? bridges, forming a 1-D double chain. In compounds 24, the crystal structures show polymeric zigzag chains generated by the mononuclear zinc(II) nodes and [M(CN)2]? spacers. The luminescence properties of the new heterometallic polymers have also been investigated.  相似文献   

16.
A series of mononuclear and binuclear Fe(III) complexes of some new symmetrical and unsymmetrical Schiff bases containing quinoline derivatives were synthesized and characterized by elemental and thermal analysis, conductance measurements and IR spectra. In mononuclear complexes, the unsymmetric Schiff bases are monobasic tetradentate towards the Fe(III) ion. However, in binuclear complexes, the symmetric Schiff-base ligands behave as monobasic bidentate towards each Fe(III) ion. The structure of the solid complexes are discussed and based on magnetic susceptibility measurements, electronic and ESR spectral studies. The biological activities of the ligands and their complexes are reported.  相似文献   

17.
New water-soluble zinc(II) Schiff-base complexes derived from amino acids (glycine, L-phenylalanine, and L-valine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate) have been synthesized. The complexes were characterized by elemental analysis, IR, electronic, 1H?NMR, and 13C?NMR spectra. In the IR spectra of the complexes, the large difference between the asymmetric νas(COO) and symmetric νs(COO) carboxylate stretch, Δν(νas(COO)–νs(COO)) of 199–247?cm?1, indicates monodentate coordination of the carboxylate group. Spectral data showed that in these complexes the ligand is a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen.  相似文献   

18.
In this study, the syntheses of two new Mo(VI) and Ni(II) complexes with H2L tridentate (ONO) Schiff-base ligand have been described and fully characterized by means of elemental analysis, FT–IR, electronic, 1H-NMR spectroscopy and single-crystal X-ray diffraction. In both complexes, the Schiff-base completely deprotonates and coordinates to the metal ion as a dianionic tridentate ligand via the donor oxygens and nitrogen atoms. The coordination numbers of Mo(VI) and Ni(II) are six and four, respectively. The DFT-B3LYP/6–31 + G (d,p) and PBEPBE/6–31 + G (d,p) calculations are carried out for the determination of the optimized structures. Frequency calculations and NBO analysis are also performed for characterization. According to the theoretical analysis of the complexes, ligand-to-metal donation is greater than back donation. NBO data revealed that the main contribution of the frontier orbitals belongs to L−2.  相似文献   

19.
20.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号