首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

2.
The red complex trans-Mo2(O2CCH3)2(μ-dppa)2(BF4)2, 1 , was prepared by reaction of [Mo2(O2CCH3)2(CH3CN)6][BF4]2 with dppa (dppa = Ph2PN(H)PPh2) in THF. The reactions of Mo2(O2C(CH2)nCH3)4 with dppa and (CH3)3SiX (X = Cl or Br) afforded the complexes trans-Mo2X2(O2C(CH2)nCH3)2(μ-dppa)2 (X = Cl, n = 2, 2; X = Br, n = 2, 3; X = Cl, n = 10, 4 ; X = Cl, n = 12, 5 ). Their UV-vis, IR and 31P{1H}-NMR spectra have been recorded and the structures of 1, 2 and 3 have been determined. Crystal data for 1 : space group P21/n, a = 12.243(1) Å, b = 17.222(1) Å, c = 13.266(1) Å, β = 95.529(1)°, V = 2784.1(6) Å3, Z = 2, with final residuals R = 0.0509 and Rw = 0.0582. Crystal data for 24CH3Cl2: space group P21/n, a = 13.438(1) Å, b = 19.276(1) Å, c = 14.182(1) Å, β = 111.464(1)°, V = 3418.9(6) Å3, Z = 2, with final residuals R = 0.0492 and Rw = 0.0695. Crystal data for 3·4CH2Cl2: space group P21/n, a= 13.579(1) Å, b = 19.425(1) Å, c = 14.199(1) Å, β = 111.881(2)°, V = 3475.6(7) Å3, Z = 2, with final residuals R = 0.0703 and Rw = 0.0851. Comparison of the structural data shows that the effect of the axial ligand on weakening the Mo-Mo bond strength is X? > CH3CN > BF4?. The Tm values are 121.7 °C for 2 , 111.1 °C for 3 and 91.5 °C for 5 , respectively.  相似文献   

3.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

4.
The synthesis and characterization of Ru2Cl(μ‐O2CCH2CH2OMe)4 ( 1 ), [Ru2(μ‐O2CCH2CH2OMe)4(H2O)2]BF4 ( 2 ), PPh4[Ru2Cl2(μ‐O2CCH2CH2OMe)4] ( 3 ), (PPh4)2[Ru2Br2(μ‐O2CCH2CH2OMe)4]NO3 ( 4 ), and (PPh4)2[Ru2I2(μ‐O2CCH2CH2OMe)4]I0.5(NO3)0.5 ( 5 ), are described. The structure of complexes 2 – 5 was established by single crystal X‐ray diffraction. All complexes show a diruthenium(II, III) unit bridged by four 3‐methoxypropionate ligands. The cationic complex 2 have two axially coordinated water molecules, with a Ru–Ru bond distance of 2.2681(12) Å. This complex shows a supramolecular two‐dimensional organization across hydrogen bonded between the axial water molecules and two methoxy groups of adjacent diruthenium units. The metal‐metal bond lengths, in the anionic complexes 3 , 4 , and 5 , are 2.3039(5), 2.3077(6), and 2.3115(8) Å, respectively. These distances are longer than the observed in compound 2 . In the anionic complexes, the axial positions of the diruthenium units are occupied by two halide ligands. Complexes 3 – 5 have PPh4+ cations as counterion, although 4 and 5 are double salts with PPh4NO3 and PPh4I0.5(NO3)0.5, respectively. All compounds have been also characterized by elemental analysis, magnetic measurements, and spectroscopic techniques.  相似文献   

5.
[TcI(NO)Cl(H2L1)2]+ cations (H2L1 = 2‐(diphenylphosphanyl)aniline) are formed during reactions of H2L1 with (NBu4)[Tc(NO)Cl4(MeOH)] or (NH4)TcO4/HCl/NH2OH mixtures. Different isomers were isolated depending on the counterions and solvents used. The technetium(I) complexes cis‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2]Cl, trans‐NO,Cl,cis‐P,P‐[TcI(NO)Cl(H2L1)2]2(TcCl6), and trans‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2](PF6) were isolated in crystalline form and studied by spectroscopic methods and X‐ray crystallography. DFT calculations show that there are only minor energy differences between the three isomers and the formation of the individual compounds is most probably strongly influenced by interactions with solvents and counterions.  相似文献   

6.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

7.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

8.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

9.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

10.
The reaction between the paddle‐wheel tetrakis(acetato)chloridodiruthenium(II,III) complex, [Ru2(μ‐O2CCH3)4Cl] and hen egg‐white lysozyme (HEWL) was investigated through ESI‐MS and UV/Vis spectroscopy and the formation of a stable metal–protein adduct was unambiguously demonstrated. Remarkably, the diruthenium core is conserved in the adduct while two of the four acetate ligands are released. The crystal structure of this diruthenium–protein derivative was subsequently solved through X‐ray diffraction analysis to 2.1 Å resolution. The structural data are in agreement with the solution results. It was found that HEWL binds two diruthenium moieties, at Asp101 and Asp119, respectively, with the concomitant release of two acetate ligands from each diruthenium center.  相似文献   

11.
The title compound and its potassium analog have been prepared from corresponding aqueous solutions of 99TcO at pH ≈? 2 with SO2 as a reducing agent. An X-ray structure determination of the Na-salt showed Tc coordinated to the tetradentate N(CH2COO) ligand (NTA). Two Tc-NTA moieties are joined via two bridging O-atoms into a four-membered Tc2O2 ring. The observed diamagnetism, a strong absorption band at 19 950 cm?1, and a short Tc-Tc distance of 2.363 Å are typical for the Tc2O2-fragment with its strong metal-metal interaction. The structural trans-influence at Tc and the network of H-bonds are consistent with Tc in oxidation state IV.  相似文献   

12.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

13.
The chemistry of technetium is being explored at the University of Nevada Las Vegas. Our goal is to investigate both the applied and fundamental aspects of technetium chemistry, with a special emphasis on synthesis, separations, and materials science. The synthetic chemistry focuses on metal–metal multiple bonding, oxides and halides. Synthesis and characterizations of (n-Bu4N)2Tc2X8, Tc2(O2CCH3)4X2 (X = Cl, Br), TcO2, Bi2Tc2O7, Bi3TcO8, TcBr3 and TcBr4 have been performed. The applied chemistry is related to the behavior of Tc in the UREX process. Separation of U/Tc has been conducted using anion exchange resin and metallic Tc waste form synthesized and characterized.  相似文献   

14.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

15.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

16.
2‐Mercapto‐methyltetrazolate, Smetetraz, acts as monoanionic, monodentate ligand in a number of technetium compounds. Anionic TcV complexes of the types [TcO(Smetetraz)4] and [TcN(Smetetraz)4]2– are formed when (Bu4N)[TcVOCl4] or (Bu4N)[TcVINCl4], respectively, react with Na(Smetetraz). Reduction of the metal takes place in the latter case. (Bu4N)2[TcN(Smetetraz)4] crystallises in the monoclinic space group Pc (a = 9.701(5), b = 17.570(5), c = 16.821(10) Å, β = 96.50(3)°, Z = 2). The Tc atom is situated 0.580(3) Å above the basal plane of a square pyramid which is formed by the sulfur atoms and the nitrido ligand as its apex. The Tc–S bond lengths lie between 2.384(3) and 2.410(3) Å. [Tc(PPh3)(Smetetraz)3(CH3CN)] is formed during the reaction of [TcCl3(PPh3)2(CH3CN)] with NaSmetetraz as blue needles with co‐crystallised solvent toluene (space group C2/c, a = 24.188(4), b = 14.373(1), c = 25.617(5) Å, β = 109.48(1)°, Z = 8). The metal atom is coordinated by PPh3 and CH3CN in the axial position of a trigonal bipyramid. All three aryl rings are on the sterically less strained side of the plane defined by the sulfur atoms. The Tc–S bond lengths range between 2.233(2) and 2.247(2) Å.  相似文献   

17.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

18.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (n‐Bu4N)2[PtX4(ox)], X = Cl, Br By oxidation of (n‐Bu4N)2[PtX2(ox)], X = Cl, Br, with Cl2 or Br2 in dichloromethane (n‐Bu4N)2[PtCl4(ox)] ( 1 ) and (n‐Bu4N)2[PtBr4(ox)] ( 2 ) are formed. The crystal structure of [(C5H5N)2CH2][PtCl4(ox)] (monoclinic, space group C2/m, a = 15.562(1), b = 13.779(1), c = 10.168(1)Å, ß = 128.099(9)°, Z = 4) reveals complex anions with nearly C2v point symmetry. The bond lengths in the Cl′‐Pt‐O˙ axes are Pt‐Cl′ = 2.287 and Pt‐O˙ = 2.048 and in the Cl‐Pt‐Cl axis Pt‐Cl = 2.314Å. The oxalato ligand is nearly plane with an O‐C‐C‐O torsion angle of 0.5°. In the vibrational spectra the PtX stretching vibrations are observed at 328 and 353 ( 1 ) and 201 and 212 cm—1 ( 2 ). The PtX′ modes appear at 360 and 343 ( 1 ) and 227 and 238 cm—1 ( 2 ). The PtO˙ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 2.08, fd(PtCl′) = 2.29, fd(PtBr) = 1.56, fd(PtBr′) = 2.02 and fd(PtO˙) = 2.46 ( 1 ) and 2.35 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 5623.0 ( 1 ) and 4536.1 ( 2 ).  相似文献   

19.
Tc2O7 crystallizes in the orthorhombic space group Pbca with a = 13.756, b = 7.439, c = 5.617 Å, Z = 4. The single crystal structure analysis shows the crystals to contain isolated centrosymmetric Tc2O7 molecules with a linear central Tc? O? Tc bridge and with, tetrahedral coordination of the Tc atoms. Tc? O bond lengths: 1.840 (bridge), 1.658, 1.684 and 1.706 Å. The structure is more closely related to CrO3, RuO4 and OsO4 than to Re2O7. Structural properties of the d° transition metal oxides are briefly discussed.  相似文献   

20.
Synthesis and Properties of Bis(tetra(n-butyl)ammonium)μ-Carbido-di(halophthalocyaninato(2–)ferrates(IV)); Crystal Structure of Bis(tetra(n-butyl)ammonium) μ-Carbido-di(fluorophthalocyaninato(2–)ferrate(IV)) Trihydrate μ-Carbido-di(pyridinephthalocyaninato(2–)iron(IV)) reacts with tetra(n-butyl)ammonium halide (nBu4N)X) in solution (X = F) or in a melt (X = Cl, Br) to yield bis(tetra(n-butyl)ammonium μ-carbido-di(halophthalo-cyaninato(2–)ferrat(IV)). The fluoro-complex salt crystallizes as a trihydrate monoclinically in the space group P121/n1 with the following cell parameters: a = 15.814(1) Å; b = 22.690(5) Å; c = 25.127(3) Å; β = 98.27(1)°, Z = 4. The Fe atoms are almost in the centre (Ct) of the (Niso)4 planes (Niso: isoindoline-N atom) with a Fe–Ct distance of 0.053(1) Å. The average Fe–Niso distance is 1.939(4) Å, the Fe–(μ-C) distance 1.687(4) Å and the Fe–F distance 2.033(2) Å. The Fe–(μ-C)–Fe core is linear (179.5(3)°). The pc2-ligands are staggered (φ = 42(1)°) with a convex distortion. The asymmetric Fe–(μ-C)–Fe stretch (in cm–1) is observed in the IR spectra at 917 (X = F), 918 (Cl) and 920 (Br) and the symmetric Fe–(μ-C)–Fe stretch at 476 cm–1 in the resonance Raman spectra. The IR active asymmetric Fe–X stretch (in cm–1) absorbs at 336 (X = F), 203 (Cl), 182 (Br), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号