首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

2.
A new series of DNA binding 5,10,15-tri(N-methyl-4-pyridiniumyl)porphyrin (TrisMPyP)-platinum(II) conjugates was synthesized, in which different spacer ligands were used for appropriate coordination to platinum(II) complexes. Compound 9b exhibited in vivo antitumor activity (T/C%, 294) superior to cisplatin (T/C%, 184) against the leukemia L1210 cell line.  相似文献   

3.
The mononuclear palladium(II) (1) and platinum(II) (2) complexes containing phenylglycine have been synthesized and characterized by elemental analysis, IR spectra, and 1H NMR spectra. The structure of 1 was determined by X-ray diffractometry. The interaction between the complexes and fish sperm DNA (FS-DNA), adenosine-5′-triphosphate (ATP), and adenine (Ade) were investigated by UV absorption spectra, the interaction mode of the complex binding to DNA was studied by fluorescence spectra and viscometry. The results indicate that the two complexes have different binding affinities to DNA, complex 2 > complex 1. Gel electrophoresis assay demonstrates that the two complexes have the ability to cleave pBR322 plasmid DNA. Cytotoxicity experiments were carried out toward four different cancer cell lines, and 1 shows lower inhibitory efficiency than 2, consistent with the binding affinities towards DNA.  相似文献   

4.
New thioether-phosphanes 2-RSC6H4CH2PPh2(RS-PPh2: R = Me, tBu, Ph) and the corresponding complexes [PdCl2(MeS-PPh2)], [PdCl2(tBuS-PPh2)], [PdCl2(PhS-PPh2)], [PdClMe(MeS-PPh2)] and [PtMe2(MeS-PPh2)] have been prepared, characterized and the X-ray crystal structures of all complexes determined. Whilst Pd(II) complexes of RS-PPh2 show low activity for CO/ethene copolymerisation, the complexes [PdCl2(RS-PPh2)] have been found to be very efficient for the Heck arylation of n-butylacrylate with bromobenzene under aerobic conditions.  相似文献   

5.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

6.
Platinum(II) and palladium(II) complexes of the trithiacrown [9]aneS(3) containing a range of Group 15 donors are reviewed. These complexes have the general formula [M([9]aneS(3))(L(2))](n+) where L represents at least one Group 15 donor. Complexes involving pnictogens, with the exception of bismuth, are observed. The complexes generally have an elongated square pyramidal geometry with a long distance interaction to the third sulphur of the [9]aneS(3) which forms the apex of the square pyramid. This axial metal-sulphur distance is quite sensitive to the donor properties of L. Poorer donors such as Sb and As ligands show short axial distances whereas the better N donor ligands show longer distances. Pt(II) complexes of the formula [Pt([9]aneS(3))(EPh(3))(2)](2+) (E = P, As, Sb) show a considerable distortion towards a trigonal bipyramidal geometry due to intramolecular π-π interactions. Over seventy of these types of complexes have been crystallographically characterized and are discussed in this article. Other unique features of the complexes, including NMR spectroscopy, redox chemistry, and electronic spectroscopy, are also discussed.  相似文献   

7.
[MLCl2]?·?zH2O?·?C2H5OH (L?=?2-[(1H-benzimidazol-2-ylmethyl)-amino]-benzoic acid methyl ester; M?=?Pd, z?=?2; M?=?Pt, z?=?0) complexes were synthesized as potential antitumor compounds and their structures were elucidated by elemental analysis and spectroscopic data. Theoretical molecular structures were investigated by the DFT/B3LYP method using the LANL2DZ basis set. The calculated molecular parameters, bond distances, and angles, revealed a square-planar geometry around the metal through pyridine-type nitrogen (Npy) of benzimidazole and the secondary amino group (NHsec). The lone pair interaction LP(2)O48 of ethanol with anti-bonding σ*(C(16)–H(29)) is an evidence for charge transfer from ethanol to platinum. The electronic movement and assignment of electronic spectra were carried out by TD-DFT calculations. The ligand in comparison to its metal complexes was screened for antibacterial activity and cytotoxicity.  相似文献   

8.
An improved synthesis of pincer ligand bis[(2-dimethylamino)phenyl]amine ((Me)N(2)NH) was reported. Reaction of the Li complex of (Me)N(2)N with suitable Pd, Pt, and Ru precursors gave the corresponding metal complexes. The structures of the Pd, Pt, and Ru complexes were determined. The Ru complex showed activity in catalytic transfer hydrogenation of aryl and alkyl ketones.  相似文献   

9.
The absolute necessity to fight some class of tumor is perceived as serious health concerns, so the discovery and development of effective anticancer agents are urgently needed. (E)‐4‐((2‐hydroxyphenyl)diazenyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one, HL, and its Ni(II), Pd(II) and Pt(II) complexes were synthesized and the biological activity was evaluated for antitumor, antioxidant and antimicrobial activity as well as DNA cleavage. Their structures were assigned depending on the elemental analysis, conductivity, magnetic moment, spectral measurements (IR, 1HNMR, mass and UV–Vis) and thermal analysis. 3D molecular modeling using DFT method confirmed that the geometrical structures agree well with the suggested experimental ones. The antitumor activity was evaluated against four different cell lines using MTT assay. The ligand HL showed a potent cytotoxic activity compared to 5‐fluorouracil as a reference drug. For metal complexes, the order of activity was: Pd(II) > Ni(II) > Pt(II). A remarkable antioxidant activity for the ligand HL was recorded. It was higher than that of the metal complexes. Results of antimicrobial experiments revealed that all compounds were moderate to highly active against selected bacterial strains but inactive as antifungal except Pd(II) which showed a moderate antifungal activity. Gel electrophoresis showed insignificant nucleases activity for the ligand or its metal complexes even in the presence of H2O2 providing protection of DNA from damage. The antitumor activity of our compounds may be not due to DNA cleavage but may be referred to a mechanism similar to that of 5‐fluorouracil which interfere with DNA replication. The present work suggests the use of this ligand in the design and development of new anticancer drugs.  相似文献   

10.
Uridine (and thymidine) undergo proton loss at N3 and coordinate as anions to displace all water molecules from dienPd(OH2)2+, dienPt(OH2)2+, enPd(OH2)22+ and enPt(OH2)22+ to form fully substituted complexes in neutral solutions. Though favored at equilibrium at low pH, the reactions of the ligands with the Pt(II) complexes proceed slowly because of the sluggishness of Pt(II) substitutions and the small fractions of ligands with pKa from 9.3 to 9.8 in the anionic basic form. Both dienPd(OH2)2+ and dienPt(OH2)2+ form two mononuclear complexes with the metal ion at N1 and N7 of adenosine and a binuclear complex with metal ions at both sites. In the mononuclear complexes dienPd(II) favors N1 over N7 coordination by 5 to 1 while dienPt(II) is nearly equally distributed between the two sites when reacting with a neutral adenosine molecule.  相似文献   

11.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

12.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

13.
Complexes of the type [Co(pic)(2)(NN)], where pic = picolinate, NN = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4) and 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]-phenanthroline-6,13-dione (bipyridyl-glycoluril) (bpg) (6) have been synthesized and characterized by elemental analysis, IR, UV-vis, NMR and ESI-MS spectroscopy and thermogravimetic analysis (TGA). Their physicochemical properties are compared with previously synthesized complexes, where NN = (H(2)O)(2) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (5). The crystal structures of the complexes 4-6 were solved by single-crystal X-ray diffraction. The complexes 4 and 5 crystallize from a mixture of chloroform and methanol in monoclinic and orthorhombic crystal systems, respectively, whereas complex 6 crystallizes from dimethyl sulfoxide (DMSO) in a tetragonal crystal system. The coordination sphere consists of two oxygen atoms and two nitrogen atoms from the two picolinates and two nitrogen atoms from the dpq, dppz or bpg ligand, respectively. Co(ii)/Co(iii) oxidation potentials have been determined by cyclic voltammetry. The DNA binding of complexes 1-5 has been investigated using thermal melting, fluorescence quenching and viscosity measurements, which indicate the partial intercalation of complex 5 with an apparent binding constant (k(app)) of 8.3 × 10(5) M(-1). DNA cleavage studies of complexes 1-5 have been investigated using gel electrophoresis in the presence of H(2)O(2) as an oxidizing agent and also by photoirradiation at 365 nm. The mechanistic investigations suggest that singlet oxygen ((1)O(2)) is the major species involved in the DNA cleavage by these complexes. The structures of complexes 2-6 were optimized with density functional theory (DFT) method (B3LYP/6-31G(d,p)). The low vertical ionization potential values indicate photoredox pathways for the DNA cleavage activity by complexes 4 and 5, which is corroborated by DNA cleavage experiments.  相似文献   

14.
15.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

16.
17.
18.
Twelve new Au(III), Pt(II) and Pd(II) complexes with glycyl-containing homopeptides glycyl-glycine (G2), glycyl-glycyl-glycine (G3), glycyl-glycyl-gycyl-glycine (G4), glycyl-glycyl-glycyl-glycyl-glycine (G5) and glycyl-glycyl-glycyl-glycyl-glycyl-glycine (G6) have been synthesized, isolated and characterized spectroscopically and structurally by means of solid-state linear-dichroic infrared (IR-LD) spectroscopy of oriented colloids in nematic liquid crystal host, 1H- and 13C-NMR, TGA and DSC, UV–Vis spectroscopy, EPR, ESI- and FAB mass spectrometry and HPLC tandem mass spectrometry (HPLC-MS/MS). Quantum chemical calculations are carried out with a view to obtain the structures and spectroscopic properties of the ligand and newly synthesized metal complexes.  相似文献   

19.
20.
A series of half‐sandwich ruthenium(II) arene complexes [(η6p‐cymene)RuII(R‐BzTSC)Cl]Cl 1 , 2 , 3 (BzTSC = benzaldehyde thiosemicarbazone and R = H, CH3 and C6H5) have been synthesized and characterized by IR, 1H NMR, UV‐visible, electrospray ionization mass spectrometry and elemental analysis. The single‐crystal structures of 1 and 3 have been determined. The molecular orbitals and electronic absorption spectra of the compounds have been calculated using the DFT and TDDFT methods. The in vitro antiproliferative activities of these complexes have been evaluated against four human cancer cell lines (CNE, H292, SKBR3 and Hey1‐B), and 3 is proved to be the most efficient inhibitor, with IC50 values of 20, 31, 10 and 34 μm , respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号