首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

2.
A series of manganese(II) complexes containing tetradentate Schiff-base ligands have been synthesized. The Schiff-base ligands were obtained by condensation of salicylaldehyde, 2-OH acetophenone or 2-OH, 3-X, 5-methyl acetophenone with ethylenediamine (X?=?Cl, Br, I). The complexes have been characterized by elemental analysis, IR, UV-VIS, ESMS, EPR spectroscopy, cyclic voltammetry and thermal analysis. The cyclic voltammograms of the complexes exhibit quasi-reversible behavior. The electrochemical potentials are influenced by the methyl and halogen atoms grafted on the ligand molecules. An EPR spectrum for the polycrystalline sample shows one broad isotopic signal as compared with the six lines for frozen solution in DMF.  相似文献   

3.
Five-coordinate Schiff-base Zn complexes (1,2-cyclohexanediamino-N,N′-bis(salicylidene)) zinc-pyridine 1 and (1,2-cyclohexanediamino-N,N′-bis(3,5-di-tert-butylsalicylidene)) zinc-pyridine 2 were synthesized and the structures of 1 and 2 have been determined by single-crystal X-ray analysis. All Zn atoms are five-coordinate in both structures. Both complexes exhibit interesting structures based on intermolecular π–π stacking and hydrogen bond interactions. Complex 1 has a one-dimensional molecular chain structure via π–π stacking interaction, while complex 2 has an interesting lattice structure (with cavities with dimensions 10.9?×?6.9?Å) formed through intermolecular π–π stacking and hydrogen bond interactions. 1 and 2 are compared and characterized by MS, elemental analysis, IR, UV-Vis and Photoluminescence (PL). Fluorescence spectra show that the maximal emission wavelength of 1 and 2 are 454?nm, and 480?nm, respectively, upon radiation by UV light. Cyclic voltammetry performed on 1 and 2 indicate a dependence of the cathodic potentials upon conformational and electronic effects. Electronic spectral properties of 1 and 2 were studied by TD-DFT methods. The fluorescent emission of these complexes originates from ligand-centred π–π? transitions. The Zn (II) centres play a key role in enhancing the fluorescent emission of the ligands.  相似文献   

4.
5.
A new series of acyclic mononuclear copper(II) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and copper perchlorate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show a d–d transition in the range 500–800?nm, electrochemical studies of the complexes show irreversible one-electron-reduction process around ?1.10 to ?1.60?V. The reduction potential of the mononuclear copper(II) complexes shifts toward anodic direction upon increasing the chain length of the imine compartment. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff?=?1.72–1.76?BM, close to the spin-only value of 1.73?BM. Electrochemical and catalytic studies of the complexes were compared on the basis of increasing the chain length of the imine compartment. All the complexes were screened for antifungal and antibacterial activities.  相似文献   

6.
Nine copper(II) complexes of o-hydroxy Schiff bases derived from benzylamine, p-methoxybenzylamine, p-nitrobenzylamine, salicylaldehyde, 2-hydroxy-1-naphthalenecarboxaldehyde, and 3-hydroxy-2-naphthalenecarboxaldehyde were synthesized and characterized by chemical analysis, mass spectrometry, UV-Vis, infrared and electron paramagnetic resonance (EPR) spectroscopy, and seven X-ray crystal structures. The X-ray diffraction studies of these compounds showed that the geometry around the copper is square planar in six of the seven complexes. EPR studies of all the complexes in DMF solution at 77 K suggest that their geometries in solution are square planar as well.  相似文献   

7.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

8.
9.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

10.
Two new N2O2 unsymmetrical Schiff bases, H2L1 = 3-[({o-[(E)-(o-hydroxyphenyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol and H2L2 = 3-[({o-[(E)-(2-hydroxy-1-naphthyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol, and their copper(II) and nickel(II) complexes, [CuL1] (1), [CuL2] (2), [NiL1] (3), and [NiL2] (4), have been synthesized and characterized by elemental analyses and spectroscopic methods. The crystal structures of these complexes have been determined by X-ray diffraction. The coordination geometry around Cu(II) and Ni(II) centers is described as distorted square planar in all complexes with the CuN2O2 coordination more distorted than the Ni ones. The electrochemical studies of these complexes indicate a good correlation between the structural distortion and the redox potentials of the metal centers. The ligand and metal complexes were also screened for their in vitro antibacterial activity.  相似文献   

11.
Tellurium-bearing acyclic Schiff bases, 2,6-bis({N-[2-(phenyltellurato)ethyl]}benzimidoyl)-4-methylphenol (HL3 ) and 2,6-bis({N-[3-(phenyltellurato)propyl]}benzimidoyl)-4-methylphenol (HL4 ) of the Te2N2O type have been prepared by condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate phenyltellurato(alkyl)amine. HL3 and HL4 have been characterized by mass spectrometry, IR, electronic and 1H-NMR spectroscopies and cyclic voltammetry. Their reactions with Cu(II) acetate monohydrate in a 2?:?1 molar ratio in methanol yield [(C6H2(O)(Me){(C6H5)C=N(CH2)nTe(C6H5)}{(C6H5)C=O})2Cu] (3 (n?=?2), 4 (n?=?3)) as suggested by analytical and spectroscopic data and single crystal X-ray crystallography of 3. In both complexes, one arm of the ligand undergoes hydrolysis at the C=N position and two molecules of the partially hydrolyzed ligand coordinate to Cu(II) through imido nitrogen and the phenolic oxygen. The telluriums do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. Electrochemical studies of 3 and 4 indicate quasi-reversible reductions (E°′?=??1.113?V (3) and ?1.149?V (4)) corresponding to the reduction of copper(II) to copper(I). The interactions of 3 and 4 with calf thymus DNA, investigated by spectrophotometry and cyclic voltammetry, indicate that 3 and 4 bind to DNA via intercalation, and the binding affinity of 3 is lower than that of its selenium analog.  相似文献   

12.
13.
Cu(II) complexes of three bis(pyrrol-2-yl-methyleneamine) ligands were synthesized and characterized by elemental analyses, mass spectra, and IR spectra. X-ray diffraction analysis shows that [CuL3]2 is a dinuclear complex with an extremely distorted square-planar geometry. Furthermore, the antioxidant activities of the compounds have been investigated. The electrochemical properties of the Cu(II) complexes have also been studied by cyclic voltammetry. The Cu(II) complexes show similar superoxide dismutase (SOD) activity compared with that of the native Cu, Zn-SOD.  相似文献   

14.
New azido-bridged [MnIII(salabza)(μ-1,3-N3)]n (1), and [CuII4(salabza)2(μ-1,1-N3)2(N3)2(HOCH3)2],(2) complexes with an unsymmetrical Schiff base ligand, {H2salabza = N,N’-bis(salicylidene)-2-aminobenzylamine}, have been synthesized, characterized by spectroscopic and electrochemical methods, and their crystal structures have been determined by X-ray diffraction. In complex 1, each manganese(III) atom is coordinated with N2O2 donor atoms from salabza and two adjacent Mn(III) centers are linked by an end-to-end (EE) azide bridge to form a helical polymeric chain with octahedral geometry around the Mn(III) centers. Complex 2 is a centrosymmetric tetranuclear compound containing two types of Cu(II) centers with square pyramidal geometry. Each terminal copper atom is surrounded by N2O2 atoms of a salabza ligand, and the oxygen atom of the methanol molecule. Each central copper(II) ion is coordinated with two phenoxo oxygen atoms from one salabza, one terminal azido, and two end-on (EO) bridging azido ligands. The central copper(II) ions are linked to each other by the two end-on (EO) azido groups.  相似文献   

15.
A new series of complexes of the type bis(N-substituted-salicydenaminato)copper(II) (1–9), have been synthesized and characterized by IR, UV–Vis and elemental analysis methods. The molecular structure of bis(N-2-bromophenyl-salicydenaminato)copper(II) (6), was determined using X-ray crystallography. There are two independent molecules in the structure. Each shows a neutral, mononuclear, four-coordinate, square-planar trans-Cu[N2O2] geometry and, in each, the Cu atom and the ligating atoms are coplanar. The chelating N–Cu–O angle is 91.39(11)° for molecule one and 91.20(11)° for molecule two, whereas the non-chelating N–Cu–O angles are 88.61(11) and 88.80(11)°, respectively. The trans-N–Cu–N and trans-O–Cu–O bond angles are 180°. The electronic absorption spectra of copper(II) complexes (1–9), indicate that the d–d band energy is dependent on the nature and position of substituent on phenyl ring of the salicyldenimine ligand. The UV–Vis spectra in various solvents were measured and a relationship between absorption spectra and dielectric constant of the solvents is reported.  相似文献   

16.
Water-soluble Ni(II) and Cu(II) complexes of a flexible Schiff-base ligand have been synthesized, and the Ni(II) complex was characterized by X-ray crystallography. The interactions of the two complexes with calf thymus DNA were investigated by spectroscopic and viscosity measurements in water. The results suggest that the two complexes bind to DNA within the groove. Antioxidant experiments against OH and O2−• show that these two complexes have excellent ability to scavenge O2−•, and the Cu(II) complex exhibits better activity than the Ni(II) complex.  相似文献   

17.
Bis(2,2′-bipyridine) complexes of ruthenium(II) with 2-, 3-, and 4-acetylpyridine derivatives were synthesized and structurally characterized. The effect of changing the location of the pyridine's acetyl substituent was studied experimentally and theoretically to clarify the effect of substituent position on the chemical behavior and photochemical properties of the complex. The substituent position on the heterocyclic-pyridine was found to strongly affect the chemical and photochemical properties of the complex. Variation of the position of the substituent, and thus ligand modification brought by as a consequence of this variation, offers possibilities to design complexes of desired structural and photochemical properties.  相似文献   

18.
The spectral properties of bis(diaryl-dithiophosphato)copper(II) complexes, [Cu(S(2)P(OR)(2))(2)], with R = o-cresyl (complex I) and 2,6-dimethylphenyl (complex II) are studied by EPR- and vis spectroscopy. In solid (powder) state both complexes exhibit dark brown colour and are paramagnetic. Room temperature EPR spectra of the complexes dissolved in non-coordinating (C(6)H(5)CH(3), C(5)H(12), C(6)H(14)), acceptor (CHCl(3), CCl(4)) or donor (DMFA, DMSO) solvents have typical features of the chromophore CuS(4). In non-coordinating and acceptor solvents their isotropic EPR parameters are: g(iso)=2.047+/-0.003, (Cu)A(iso) = 7.2+/-0.1 mT and (P)A = 0.95+/-0.1 mT. An absorption band characterizes the vis spectra in these solvents with a maximum at 427 nm, due to a ligand-to-metal charge-transfer transition. One hour after dissolution the absorbance at 427 nm follows Beer's law with molar absorptivity (epsilon) about 11000, which does not change significantly after 24 h staying at room temperature or after 30 min heating at 50 degrees C. Both DMFA and DMSO exhibit specific solute-solvent interaction with the acceptor centre of copper complex yielding an axial adduct, with increased g-factor and decreased (hf)A compared to the initial complex. An additional EPR signal with unresolved hyperfine structure is also detected in DMSO. EPR and vis intensities of both bis(diaryl-dtp)Cu(II) complexes decrease after dissolution in both solvents. Moreover, they are EPR silent in pyridine and do not show any absorption in the vis spectra.  相似文献   

19.
20.
Copper (II) complexes [Cu(dmit)(phen)]2 (1) and [Cu(mnt)(phen)] n (2) (mnt2??=?maleonitriledithiolate, dmit2??=?1,3-dithiole-2-thione-4,5-dithiolate, phen?=?1,10-phenanthroline) have been prepared by ligand-exchange between phen and [N(Bu)4]2[Cu(dmit)2] or [N(Bu)4]2[Cu(mnt)2]. Both complexes have been characterized by spectroscopic, electrochemical, and single-crystal X-ray analysis. In complex 1, dimers are extended into a two-dimensional array by weak S5–Cu contacts. In complex 2, monomers are extended into chains in a head-to-tail arrangement by weak Cu–S coordination bonds and ππ stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号