首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu(C10H11O2N2)2 (1) and [Zn(C10H12O2N2)2(H2O)2](NO3)2 (2) were synthesized and characterized by elemental analysis, FT-IR spectra, UV-Vis absorption spectroscopy, and X-ray single-crystal diffraction. Both complexes show distorted octahedral geometry. In 1, Cu(II) is coordinated by four oxygen atoms from four ligands and two nitrogen atoms from two ligands. In 2, Zn(II) is coordinated by two oxygen atoms and two nitrogen atoms from two ligands, and two water molecules. The crystal structures suggest that original ligand o-carboxybenzaldehyde salicyloylhydrazone (C15H12O4N2) changed into acetone salicyloylhydrazone (C10H12O2N2). The TG-DTG curves of these complexes indicate two different decomposition processes. 1 and 2 display catalytic activities to decomposition of hydrogen peroxide. Interaction between the complexes and DNA studied by UV-Vis titration shows the insert interaction.  相似文献   

2.
A new series of complexes of transition metal (Cu, Zn, Ni) perchlorate with imidazole have been synthesized and characterized by elemental analysis, infrared (IR), UV-Vis spectroscopy, and single-crystal X-ray diffraction. Based on elemental and spectral data, the complexes are M(C3H4N2) x (ClO4)2 (M?=?Cu, Zn, x?=?4; M?=?Ni, x?=?6; C3H4N2?=?imidazole). The crystal structures of Cu(C3H4N2)4(ClO4)2 (1) and Zn(C3H4N2)4(ClO4)2 (2) show metals surrounded by four nitrogens of imidazole, while the nickel complex Ni(C3H4N2)6(ClO4)2 (3) has six nitrogens of imidazole. Intra- and inter-molecular hydrogen bonds exist between hydrogen of imidazole and oxygen of perchlorate. The thermal stabilities of 1, 2, and 3 at different heating rates (β?=?5°C?min?1, 10°C?min?1, and 15°C?min?1) show that all the complexes exhibit two thermal decomposition stages; the sequence of thermal stability is 2?>?1?>?3. 1, 2, 3, and imidazole display DNA binding ability, ascertained by UV-Vis titration.  相似文献   

3.

The complexes [Co(C15H26N2)(C2H3O2)2] (1), [Ni(C15H26N2)(C2H3O2)2] (2), [Cu(C15H26N2)(C2H3O2)2] (3) and [Zn(C15H26N2)(C2H3O2)2] (4) were prepared from reaction of (?)-sparteine with the corresponding metal(II) acetates in ethanol at stoichiometric ligand to metal ratios. The complexes were characterized by UV-Vis and IR spectroscopies, and magnetic susceptibility measurements. The solid-state structures of 1, 2 and 4 have been determined by X-ray crystallography. The Complexes 1 and 2 display a pseudo-octahedral structure around the metal center, where two acetate ligands coordinate to the metal center in a bidentate fashion, whereas the metal centers in 3 and 4 adopt a pseudo-tetrahedral structure and two acetate ligands in these complexes coordinate to the metal center in a monodentate fashion. The whole set of prepared complexes has been used for comparative structural and spectroscopic studies.  相似文献   

4.
Four transition metal (Cu(II), Zn(II) and Ni(II)) complexes with a Schiff-base ligand (salicylideneglycine) have been synthesized. All complexes have been characterized by elemental analysis, IR spectra and UV-vis spectroscopy. Single-crystal analyses were performed with (C9H7NO3)Cu(C3H4N2) (1), (C9H7NO3)Zn(C3H4N2)2 (2), (C9H7NO3)2Ni2(C3H4N2)4 (3) and (C9H7NO3)Ni(C3H4N2)2(C4H5N2O) · CH3OH · 0.5H2O (4) and fluorescence spectra and thermogravimetric analyses were also carried out. Structural analyses show that 1, 2 and 4 have similar coordinated modes with the tridentate amino-Schiff-base ligand, but differ from the binuclear nickel complex 3. The tridentate amino-Schiff-base ligand contains aliphatic nitrogen, phenoxy, and carboxylic oxygen as three donor atoms. In addition, inter- and intra-molecular hydrogen bonds are also discussed.  相似文献   

5.
Although there are many examples of acetate complexes, acetamide complexes are virtually unknown. A side‐by‐side comparison in (acetato‐κ2O,O′)(1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐κ4N)nickel(II) hexafluoridophosphate, [Ni(C2H3O2)(C12H28N4)]PF6, (1), and (acetamidato‐κ2O,O′)(1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐κ4N)nickel(II) hexafluoridophosphate, [Ni(C2H4NO)(C12H28N4)]PF6, (2), shows the steric equivalence between these two ligands, suggesting that acetamide could be considered as a viable acetate replacement for electronic tuning.  相似文献   

6.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

7.
Reactions of M(NO3)2?·?xH2O [M?=?Co(II), Ni(II), and Cu(II)] with N,N,N′,N′-tetraalkylpyridine-2,6-dicarboxamides(O-daap) in CH3CN yield [Co(O-dmap)(NO3)2] (1), [Co(O-deap)(NO3)2] (2), [Co(O-dpap)(NO3)2] (3), [Ni(O-dmap)(H2O)3](NO3)2] (4), [Ni(O-deap)(H2O)2(NO3)](NO3)] (5), [Cu(O-deap)(NO3)2] (6), and [Cu(O-dpap)(NO3)2] (7). X-ray crystal structures of 1, 2, 4, 5, and 7 reveal that O-daap ligands coordinate tridentate to each metal, O–N–O, with nitrate playing a vital role in molecular and crystal structures of all the complexes. The coordination geometry in the two Co(II) complexes, 1 and 2, is approximately pentagonal bipyramidal with nitrate bonded in a slightly unsymmetrical bidentate chelating mode. [Ni(dmap)(H2O)3](NO3)2 (4) and [Ni(deap)(H2O)2(NO3)](NO3) (5) exhibit octahedral geometry, the former containing uncoordinated nitrate while the latter has one nitrate coordinated unidentate and the other nitrate outside the coordination sphere. The Cu(II) in [Cu(dpap)(NO3)2] (7) occupies a distorted square pyramidal geometry and is linked to two unidentate nitrates, although one nitrate is also involved in a weak interaction with the metal through its other oxygen. IR spectra and other physical studies are consistent with their crystal structural data. O-dmap?=?N,N,N′,N′-tetramethylpyridine-2,6-dicarboxamides; O-deap?=?N,N,N′,N′-tetraethylpyridine-2,6-dicarboxamides; and O-dpap?=?N,N,N′,N′-tetraisopropylpyridine-2,6-dicarboxamides.  相似文献   

8.
Three novel mixed ligand complexes of Ni(II), Zn(II) and Cd(II) with p-chlorobenzote and N,N-diethylnicotinamide were synthesised and characterized on the basis of elemental analysis, FTIR spectroscopic analysis, solid state UV-Vis spectrometric and magnetic susceptibility data. The thermal behavior of the complexes was studied by simultaneous TG-DTA methods in static air atmosphere and the mass spectra data were recorded. According to microanalytical results, formulas of complexes are C34H40N4O8ClNi, C34H40N4O8ClZn and C34H44N4O10ClCd. The complexes contain two moles of coordination waters, two moles p-chlorobenzoate and two mole N,N-diethylnicotinamide (dena) ligands per formula unit. In these complexes, the p-chlorobenzoate and N,N-diethylnicotinamide behave as monodentate ligand through acidic oxygen and nitrogen of pyridine ring. The decomposition pathways and the stability of the complexes are interpreted in the terms of the structural data. The final decomposition products were found to be as metal oxides.  相似文献   

9.
The synthesis, characterization, and crystal structures of two Ni(II) complexes with N,N-bis[2-(2′-benzimidazolyl)ethyl]amine (bbiea) (1) and N,N-bis[2-(1′-methyl-2′-benzimidazolyl)ethyl]amine (bmbea) (2) are reported. The nickel complex Ni(bbiea)(O2C2H3)(ClO4) (3) crystallizes in the space group C2/c, with a = 35.830(7), b = 14.130(3), c = 10.756(2)?Å, and β = 103.04(3)°. Compound 4, Ni(bmbea)(NO3)2, crystallizes in the space group P21/c, with a = 17.024(5), b = 16.516(4), c = 8.692(2)?Å, and β = 91.31(2)°. In 3, the bbiea ligand is coordinated to the Ni(II) ion in a facial conformation, whereas the bmbea ligand in 4 adopts meridonal geometry. Both complexes contain a single benzimidazole chelate and the remaining coordination sites are occupied by solvent molecules and/or counterions. Reactions involving large excesses of ligand-to-metal and different solvents produced only the mono-chelated complexes 3 and 4. No evidence for formation of bis-chelated complexes with Ni(II) was observed by MALDI-TOF and ESI-mass spectroscopy. Ligand field parameters for 3 and 4 were determined to be 9606 and 9862?cm?1, respectively.  相似文献   

10.
A new series of Cu(II), Ni(II), and Co(II) complexes have been synthesized from 3-formylchromoniminopropylsilatrane (C19H24O5N2Si) (2) and 3-formylchromoniminopropyltriethoxysilane (1). Silatrane ligand (C19H24O5N2Si) (2) has been synthesized by the reaction between 3-aminopropyltriethoxysilane and 3-formylchromone followed by a treatment with triethanolamine. The nature of bonding and the geometry of the complexes have been deduced from elemental analyses, magnetic susceptibility, infrared, electronic, 1H NMR, 13C NMR, and ESR spectral studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square planar geometry for Cu(II) and Ni(II) and tetrahedral geometry for Co(II). The redox behavior of copper complexes was studied by cyclic voltammetry. The biological activity of the ligand and metal complexes has been studied on Klebsiella pneumoniae, Staphylococcus aureus, Escherichia Coli, and Bacillus subtilis by the well diffusion method using acetonitrile as solvent. The zone of inhibition values were measured at 37°C for 24 h. Antimicrobial screening tests show better results for the metal complexes than the ligand.  相似文献   

11.
Co(II), Ni(II) and Cu(II) nitrate complexes with btmpp, namely ([Co(btmpp)(H2O)2(NO3)]NO3 (1), [Ni(btmpp)(H2O)(NO3)]NO3 (2) and [Cu(btmpp)(MeOH)(NO3)]NO3 (3), where btmpp = 2,6-bis(3,4,5-trimethyl-N-pyrazolyl)pyridine), have been synthesized and characterized by physicochemical and spectroscopic methods. The crystal structure of complex 1 has been determined by single crystal diffraction at 100K. In all the complexes, btmpp is coordinated in a tridentate mode through its nitrogen atoms. One of the nitrates in complex 1 is terminally bonded to the metal center through the oxygen atom, whereas the other one is out of the coordination sphere. The Co(II) atom in complex 1 is hexa-coordinated with a CoN3O3 distorted octahedral environment. Decomposition of three complexes was analyzed thermogravimetrically. All three complexes decompose similar to explosive material.  相似文献   

12.
Two trinuclear Ni(II) complexes Ni3(L1)2(py)2(DMF)(H2O) (1) and Ni3(L2)2(py)2(DMF)2 (2) with two new trianionic pentadentate ligands N-(3,5-dimethylbenzoyl)-salicylhydrazide (H3L1) and N-(phenylacetyl)-5-nitrosalicylhydrazide (H3L2) have been synthesized and characterized by X-ray crystallography. Nickel ions in the two complexes have square-planar/octahedral/square-planar coordination. Central metal ion and two terminal metal ions in the two complexes are combined by two bridging deprotonated ligands, forming a trinuclear structural unit with an M–N–N–M–N–N–M core. Studies on the trinuclear Ni(II) complexes show that the β-branched N-acylsalicylhydrazide ligands with sterically flexible Cα methylene groups yield linear trinuclear Ni(II) complexes, while α-branched N-acylsalicylhydrazide ligands tend to form bent trinuclear Ni(II) complexes. Antibacterial screening data in a previous study indicates that bent trinuclear Ni(II) compound 1 is more active than linear compound 2 and less active than a tetranuclear nickel compound.  相似文献   

13.
The structures of di­aqua(1,7‐dioxa‐4‐thia‐10‐aza­cyclo­do­decane)­nickel dinitrate, [Ni(C8H17NO2S)(H2O)2](NO3)2, (I), bis­(nitrato‐O,O′)(1,4,7‐trioxa‐10‐aza­cyclo­do­decane)­mercury, [Hg(NO3)2(C8H17NO3)], (II), and aqua­(nitrato‐O)(1‐oxa‐4,7,10‐tri­aza­cyclo­do­decane)copper nitrate, [Cu(NO3)(C8H19N3O)(H2O)]NO3, (III), reveal each macrocycle binding in a tetradentate manner. The conformations of the ligands in (I) and (III) are the same and distinct from that identified for (II). These differences are in agreement with molecular‐mechanics predictions of ligand conformation as a function of metal‐ion size.  相似文献   

14.
The two new nickel(II) complexes, [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) (where HL/L = N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide), have been synthesized and characterized by elemental analysis, spectroscopic, magnetic susceptibility, and cyclic voltammetric measurements. Single-crystal X-ray analysis of [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) has revealed the presence of a distorted octahedral geometry around nickel(II). The X-ray and spectral characterizations have confirmed the existence of the keto-enol form of the ligands in the complexes. The electronic structures and spectral properties of the ligands and the complexes have been explained by DFT and TDDFT calculations. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

15.
This work describes the synthesis, IR and UV-Vis spectroscopic characterization as well the thermal behavior of the [NiCl2(HIPz)4]⋅C3H6O (1), [Ni(H2O)2(HIPz)4](NO3)2 (2), [Ni(NCS)2(HIPz)4] (3) and [Ni(N3)2(HIPz)4] (4) (HIPz=4-iodopyrazole) pyrazolyl complexes. TG experiments reveal that the compounds 14 undergo thermal decomposition in three or four mass loss steps yielding NiO as final residue, which was identified by X-ray powder diffraction.  相似文献   

16.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

17.
The complexes Mn(II), Co(II), Ni(II) and Zn(II) with 4-oxo-4H-1-benzopyran-3-carboxaldehyde were synthesized and characterized by elemental analysis, infrared and UV spectroscopy, X-ray diffraction patterns, magnetic susceptibility, thermal gravimetric analysis, conductivity and also solubility measurements in water, methanol and DMF solution at 298 K. They are polycrystalline compounds with various formula and different ratio of metal ion:ligand. Their formula are following: [MnL2(H2O)](NO3)2·2H2O, [CoL2](NO3)2·3H2O, [NiL2](NO3)2·3H2O, [CuL2](NO3)2·H2O and [ZnL3](NO3)2, where L = C10H6O3. The coordination of metal ions is through oxygen atoms present in 4-position of γ-pyrone ring and of aldehyde group of ligand. Chelates of Mn(II), Co(II), Ni(II) and Cu(II) obey Curie–Weiss law and they are high-spin complexes with the weak ligand fields. The thermal stability of analyzed complexes was studied in air at 293–1,173 K. On the basis of the thermoanalytical curves, it appears that thermal stability of anhydrous analysed chelates changed following: Cu (423 K) < Zn (438 K) ~ Co (440 K) < Ni (468 K). The gaseous products of thermal decomposition of those compounds in air atmosphere are following: CO2, CO, NO2, N2O, hydrocarbons and in case of hydrates also water. The molar conductance data confirm that the all studied complexes are 1:2 electrolytes in DMF solution.  相似文献   

18.
pH titration shows that 1 : 1 : 1 mixed-ligand complexes are formed in the systems palladium(II)-Cyt-Glu-H2O (loggB = 19.73) and palladium(II)-Cyt-Lys-H2O (logβ = 16.20). Complexes Pd(C5H5N5)(C5H8NO4)Cl, Pd(C5H5N5)(C6H13N2O2)Cl, Pd(C4H5N3O)(C6H13N2O2)Cl, and Pd(C4H5N3O)(C5H8NO4)Cl are synthesized and characterized by chemical analysis, X-ray powder diffraction, and thermogravimetry. The coordination mode of amino acids, cytosine, and adenine to the palladium(II) ion is determined.  相似文献   

19.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

20.
The crystal structures of the title complexes, namely trans‐bis­(iso­quinoline‐3‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)cobalt(II), [Co(C10H6NO2)2(CH3OH)2], and the corresponding nickel(II) and copper(II) complexes, [Ni(C10H6NO2)2(CH3OH)2] and [Cu(C10H6NO2)2(CH3OH)2], are isomorphous and contain metal ions at centres of inversion. The three compounds have the same distorted octahedral coordination geometry, and each metal ion is bonded by two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two iso­quinoline‐3‐carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O—H⋯O hydrogen bonds between the methanol ligands and neighbouring carboxyl­ate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号