首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of tin(II) and tin(IV) chlorides with norfloxacin (NOR) has been investigated. Elemental analysis, infrared, mass spectra and thermal analysis have been used to characterize the isolated solid complexes. The results support the formation of complexes with the formula [Sn(NOR)2]Cl2·4H2O and [Sn(NOR)3]Cl4. The infrared spectra of the isolated solid complexes suggested that NOR act as bidentate ligand through the carbonyl oxygen atom and one oxygen atom of the carboxylic group forming six-membered rings with the tin ions. The interpretation, mathematical analysis and evaluation of kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, pre-exponential factors, activation energy evaluated by using Coats–Redfern and Horowitz–Metzger equations are carried out for two complexes. The data obtained indicate that the two complexes decompose in one stage and general mechanisms describing the decomposition are suggested. Furthermore, the electronic, and 1H?NMR spectra have been studied.  相似文献   

2.
A new tetranuclear organotin carboxylate {[(n‐Bu2SnO)2L]2}n (complex 1 ) was synthesized by the reaction of di‐n‐butyltin oxide with (p‐carboxymethoxy‐phenoxy) acetic acid (LH2) and characterized by elemental analyses: IR, UV–visible, 1H, 13C, 119Sn NMR spectroscopy and single crystal X‐ray study. X‐ray crystallography diffraction data revealed that the complex 1 was polymeric fashion with a chain structure containing a ladder‐like tetranuclear organo‐oxotin cluster. In the complex 1 , the ligand LH2 is coordinated to the central tin(IV) atoms via the carboxylato‐O atoms. The tetranuclear tin system is formed by the bridges through the carbonyl oxygen atom of the carboxylate moieties and making the tin atom of pentacoordinated in distorted trigonal bipyramidal geometry. Single crystal X‐ray data indicate that the complex 1 crystallized in the cubic system with the space group C2/c.  相似文献   

3.
A compound of formula [SnII(NO3) [(C6H5)3 SnIV], containing a tin(IV)tin(II) bond, has been prepared, and its crystal structure is determined.  相似文献   

4.
Four new tin(IV)/organotin(IV) complexes, [SnCl3(BPCT)] (2), [MeSnCl2(BPCT)] (3), [Me2SnCl(BPCT)] (4), and [Ph2SnCl(BPCT)] (5), have been synthesized by the direct reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] and stannic chloride/organotin(IV) chloride(s) in absolute methanol under purified nitrogen. HBPCT and its tin(IV)/organotin(IV) complexes (25) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, and 1H NMR spectral studies. In all the complexes, tin(IV) was coordinated via pyridine-N, azomethine-N, and thiolato-S from 1. The molecular structure of 2 has been determined by X-ray single-crystal diffraction analysis. Complex 2 is a monomer and the central tin(IV) is six-coordinate in a distorted octahedral geometry. The crystal system of 2 is monoclinic with space group P121/n1 and the unit cell dimensions are a?=?8.3564(3)?Å, b?=?23.1321(8)?Å, c?=?11.9984(4)?Å.  相似文献   

5.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

6.
Tin (IV) chloride reacts with sulfolane (S) to form a cis-octahedral adduct SnCl4·S2. Solutions of lithium chloride and tin (IV) chloride in sulfolane contain the complex ions SnCl 5 and SnCl 6 2– at 11 and 21 mole ratios of constituents, respectively. The complexes are characterized by conductimetry and by Mössbauer, IR, and Raman spectroscopy.  相似文献   

7.
Investigations into Tin(IV) Alkoxides. I. Crystal and Molecular Structure of Tin(IV)-isopropoxide-Isopropanol Solvate, Sn(OiPr)4 · i-PrOH The isopropanol complex of tin(IV)-isopropoxide has been prepared by the reaction of tin tetrachloride with sodium isopropoxide. The compound forms colourless, moisture sensitive crystals, which in dry air easily release the coordinated solvent molecules. The crystal and molecular structure of Sn(OiPr)4 · i-PrOH has been determinated by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with a = 1174.2(5), b = 1428.5(3), c = 1234.1(3) pm, β = 95.37(1)° and Z = 4. The crystal structure consists of discrete, dimeric molecules in which the two tin atoms are bridged by two alkoxide groups. The octahedral coordination sphere of each tin atom is completed by one solvent molecule which, in addition, forms one hydrogen bridge to an alkoxide group of the neighboring tin atom.  相似文献   

8.
In view of the important role of dithizone in trace metal analyses, new structural aspects and approaches used to probe metal complexes of dithizone are of interest. Three X-ray diffraction structures are reported, dichloridobis(dithizonato)tin(IV), dichlorido(dithizonato)antimony(III), and bis(dithizonato)copper(II). During synthesis of the tin complex, auto-oxidation of SnIICl2 to SnIV occurred without chloride liberation. The SbIII complex revealed a unique distorted see-saw geometry which is, as for the other complexes, predicted by DFT molecular orbital calculations. The computed products of the lowest energy reactions are in agreement with experimentally obtained reaction products, which, together with molecular orbital renderings serve as a tool toward prediction of modes of coordination in these complexes. The S–M–N bond angle in the five-membered coordination ring shows a linear relationship with the corresponding metal ionic radii.  相似文献   

9.
Abstract

We report the synthesis and spectroscopic characterization of the first organotin(IV) complexes with cyclic seven-membered dithiocarbamate ligands: the azepane-1-carbodithioate and the homopiperazine-1,4-bis-carbodithioate with two different organotin entities, di-n-butyltin and tri-cyclohexyltin: [(C4H9)2Sn{S2CN(CH2)6}2] (3), [(C6H11)3Sn{S2CN(CH2)6}] (4), and [(C6H11)3Sn}2 (μ-S2CN(C5H10)NCS2)] (5). Compounds (3–5) are air-stable both in solid-state and in solution, and were characterized by elemental analyses, IR, FAB+–MS, and multinuclear NMR (1H, 13C, and 119Sn) spectroscopy. Their molecular structures were unambiguously established by single-crystal X-ray diffraction studies. The geometrical arrangement around the tin atom can be described as distorted octahedral for (3) and distorted trigonal bipyramid for (4) and (5). The coordination mode for both ligands is considered as asymmetric bidentate, as happens in other organotin(IV) dithiocarbamates. Furthermore, (4) and (5) do not exhibit intermolecular secondary interactions, while (3) presents intermolecular interactions between the tin and a sulfur atom with the reciprocally neighboring molecule, giving rise to a zig-zag polymeric structure.  相似文献   

10.
The synthesis of the Sn(IV)-complexed, Schiff base derivatives 1a-1l, prepared in one pot by the reaction of 2-amino-4-R-phenol (R = H, Me, Cl, NO2), 2-pyridinecarboxaldehyde, 2-picolinic acid and dimethyl-, dibutyl-, and diphenyltin oxides, is described. The complexes were characterized by IR, MS, 1H, 13C, 119Sn NMR. Suitable crystals of 1e and 1h enabled us to use X-ray diffraction to determine their molecular structures, which exhibited pentagonal-bipyramidal geometries where the butyl groups occupied the axial positions whereas the nitrogen and the oxygen atoms occupied the equatorial positions. The reaction of the Schiff base 2 with dibutyltin oxide led to the pentacoordinated complex, 2h, through the addition of methanol to the CN bond. An unusual reduction-oxidation reaction took place by the reaction of 2-amino-4-nitro-phenol, dibutyltin oxide and 2-pyridinecarboxaldehyde, which produced the corresponding amine, 3h, and the amide, 4h, tin(IV) derivatives. Both structures were established by X-ray crystallography and exhibited a distorted, bipyramidal trigonal (BPT) geometry.  相似文献   

11.
A drum-shaped organooxotin (IV) complex with 2,3,4,5-tetrafluorobenzoic acid of the type {[SnR2(2,3,4,5-F4C6HCO2)]O}6 (R?=?m-Cl-PhCH2) has been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C, 119Sn NMR spectra and X-ray crystallography diffraction analysis. This complex exhibits a new structural environment appearing as a “drum” arrangement with hexa-coordinated tin atoms in a four-membered stannoxane ring, (–Sn–O–)2, as a common structural feature. Each tin(IV) displays a distorted octahedral geometry. Weak, but significant, intramolecular C–H?···?F hydrogen bonds and π–π stacking interactions are shown. These contacts lead to aggregation and supramolecular self-assembly. Cleavage of Sn–C bond occurred in complexes under the influence of strong acid.  相似文献   

12.
New Polynuclear Organotin(IV)–Nitrogen Compounds. Synthesis and Crystal Structures of [(PhSn)4(NPh)5Cl2] and [(MeSn)4(NHPh)4(NPh)4] The reaction of the organotin halides PhSnCl3 and MeSnCl3 with LiNHPh leads to the formation of two new nitrogen bridged organotin compounds, [(PhSn)4(NPh)5Cl2] ( 1 ) and [(MeSn)4(NHPh)4(NPh)4] ( 2 ). The crystal structures of 1 and 2 have been determined by low temperature X‐ray diffraction. 1 contains a bicyclic Sn4N5 framework, which consists of two six‐membered Sn3N3‐rings. All tin atoms are coordinated nearly tetrahedrally. Two tin atoms are bonded to a phenyl group and three nitrogen atoms, the other two tin atoms are coordinated by a phenyl group, two nitrogen atoms and a terminal chlorine atom. In 2 the tin atoms define the corners of a distorted square. Each edge of the square is bridged by a μ2‐NHPh and a μ2‐NPh group. The bridging NHPh and NPh groups are arranged at opposite sides of the Sn4 plane. The tin atoms are coordinated square pyramidally by 4 nitrogen atoms and a methyl group.  相似文献   

13.
The reactivity of aryl‐substituted stannylenes, Ar2Sn ( 4 ), towards silylarenium borates, [R3SiArH][B(C6F5)4] ( 3 ), was investigated. The reaction with 2,3,4‐trimethyl‐6‐tert‐butylphenyl (mebp)‐substituted stannylene gave silyl‐substituted stannylium ions 2 a , b , which were characterized by NMR spectroscopy supported by the results of quantum‐mechanical computations of molecular structures and magnetic properties. The tri‐iso‐propylphenyl‐substituted stannylium ions 2 c , d undergo a decomposition reaction in toluene to give the dicationic tin–arene complex [Sn(C7H8)3]2+ ( 5 ) in the form of the [B(C6F5)4] salt in high yields. The 5 [B(C6F5)4]2 salt was identified by single crystal X‐ray diffraction analysis and by Mössbauer spectroscopy. The bonding situation was investigated by using natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) calculations. The substitution of the weakly coordinating borate anion by the carboranate [CB11H6Br6]? results in replacement of the toluene ligands and formation of tin(II) carboranate with only weak Sn2+–anion interactions as suggested by the solid‐state structure of the isolated salt.  相似文献   

14.
The reaction of meso-tetraarylporphyrins (H2T(X)PP) with SnCl4 affords green intermediate sitting-atop (i-SAT) complexes, [(H2T(X)PP)SnCl4]. UV–Vis, 1H NMR and 13C NMR spectral data show that the porphyrin core of the complexes is distorted, thus two nitrogen atoms of the pyrrolenine groups on one side of the porphyrin plane act as electron donors to the tin center of SnCl4. The intermediate sitting-atop (i-SAT) complex is formed each time during the incorporation of the metal center, where in the intermediate state the pyrrolic protons still remain on the porphyrin.  相似文献   

15.
With a view to energetic and (opto)electronic applications, tin (IV) oxide (SnO2) nanoparticles have been successfully prepared at the nanoscale by a templating approach based on the use of zinc (II) oxide (ZnO) as template. The procedure consisted in preparing a mixture of tin precursor and template, subsequently calcined at 650 °C under air to lead to the formation of a SnO2/ZnO composite material. Finally, the material was washed with an alkali solution to remove the template. The template/tin precursor mass ratio was varied in order to tailor the tin (IV) oxide material, especially with a view to main particle size. The resulting SnO2 nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption and electron microscopy. The tin (IV) oxide nanomaterial exhibited enhanced textural and physical surface properties (particle size, surface area, pore size) correlated to an increasing template/tin precursor mass ratio. For instance, from optimized experimental conditions, the specific surface area and pore volume were heightened twofold, reaching values of 49 m2/g and 0.32 cm3/g, respectively.  相似文献   

16.
Nearly monochromatic‐red‐light‐emitting polymers with pendant carbazole and europium (Eu) complex were synthesized and characterized by Fourier transform infrared, elemental analysis (EA), 1H NMR, 13C NMR, UV, and gel permeation chromatography. The photoluminescence and electroluminescence (EL) properties of these polymers were investigated. A single‐layer light‐emitting‐diode device of the structure (indium tin oxide/polymer P4/Al) was fabricated, showing the characteristic bright‐red EL of the Eu3+ complex at 614 nm at a turn‐on voltage of about 17 V. The EL spectrum, current–voltage, and emission‐intensity–voltage characteristics of the device were measured. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3405–3411, 2000  相似文献   

17.
The reactions of sodium and thallium catecholates CatM2 (Cat is the 3,6-di-tert-butylpyrocatechol dianion; M = Na, T1) with tin diphenyl dichloride afford new tin catecholate complexes Ph2SnCat · THF (I) and Ph2SnCat (II). The molecular structure of pentacoordinated complex I is determined by X-ray diffraction analysis. The synthesized complexes are capable of fixating both short-lived (PhC(O)O., (CH3)2NC(S)S., and NC(CH3)2C.) and stable free radicals (aroxyl, nitroxyl, triphenylmethyl, and phenoxazinyl) to form stable o-semiquinone tin derivatives.  相似文献   

18.
trans-Bis(ferrocenecarboxylato)(5,10,15,20-tetraphenylporphyrinato)tin(IV) complex Sn(TPP)(FcCOO)2 has been synthesized and fully characterized. The X-ray structural analysis of Sn(TPP)(FcCOO)2 reveals that the tin(IV) center is octahedrally coordinated by the porphyrin occupying the square base and axial coordination of two ferrocenecarboxylato ligands in an anti orientation with respect to each other. The Fe(II) center of the ferrocenecarboxylato ligand lies 5.7 Å from the tin(IV) center of the porphyrin ring. The cyclic voltammogram of Sn(TPP)(FcCOO)2 exhibits three distinctive redox couples consisting of one oxidative wave and two reductive waves due to the ferrocenecarboxylato ligands and the porphyrin ring, respectively.  相似文献   

19.
Investigation of the solubility behavior of para-substituted (H, Me, t-Bu, n-Bu) meso-tetraarylporphyrins as well as meso-tetraalkylporphyrins (Me, n-Pr, n-Bu) were performed. An increase of solubility in chloroform and benzene is detected according to the higher functionality in para position of the phenyl ring for meso-tetraarylporphyrins or in meso position on meso-tetraalkylporphyrins. Furthermore, the series of bis(chlorido)tin(IV) meso-tetraarylporphyrin and bis(chlorido)tin(IV) meso-tetraalkylporphyrin was investigated via UV/Vis spectroscopy, 119Sn-NMR and single crystal X-ray diffraction.  相似文献   

20.
The three isostructural compounds butyl­ammonium hexa­chlorido­tin(IV), pentyl­ammonium hexa­chlorido­tin(IV) and hexyl­ammonium hexa­chlorido­tin(IV), (CnH2n+1NH3)2[SnCl6], with n = 4, 5 and 6, respectively, crystallize as inorganic–organic hybrids. As such, the structures consist of layers of [SnCl6]2− octa­hedra, separated by hydro­carbon layers of inter­digitated butyl­ammonium, pentyl­ammonium or hexyl­ammonium cations. Corrugated layers of cations alternate with tin(IV) chloride layers. The asymmetric unit in each compound consists of an anionic component comprising one Sn and two Cl atoms on a mirror plane, and two Cl atoms in general positions; the two cations lie on another mirror plane. Application of the mirror symmetry generates octa­hedral coordination around the Sn atom. All compounds exhibit bifurcated and simple hydrogen‐bonding inter­actions between the ammonium groups and the Cl atoms, with little variation in the hydrogen‐bonding geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号