首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of new triorganotin(IV) pyridinedicarboxylates [(C2H5)3NH][(Me3Sn)3(2,6-pdc)2(H2O)2] (1), [(C2H5)3NH][(Ph3Sn)3(2,6-pdc)2(H2O)2] (2), [(C2H5)3NH]{[(PhCH2)3Sn]3(2,6-pdc)2(H2O)2} (3), [Me3Sn(3,5-pdc)]n (4), [Ph3Sn(3,5-pdc)]n (5), [(PhCH2)3Sn(3,5-pdc)]n (6), [(Me3Sn)2(2,5-pdc)]n (7), [(Ph3Sn)2(2,5-pdc)]n (8) and {[(PhCH2)3Sn]2(2,5-pdc)}n (9) were synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridinedicarboxylate) when triethylamine was added. Complexes 1-9 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. Among them complexes 1, 5 and 7 have also been characterized by X-ray crystallographic diffraction analyses. Complex 1 has a trinuclear structure and forms a 2D supramolecular structure due to the coordinated water molecules via hydrogen bonds to the pendant O atoms of the carboxyl groups and the N atoms derived of the pyridine ring. Complex 5 forms a 1D polymeric chain by the intermolecular Sn?N (N atom derived of pyridine ring) interactions. Complex 7 has a network structure where 2,5-pyridinedicarboxylate acts as a tetradentate ligand coordinated to trimethyltin(IV) ions.  相似文献   

2.
Four triorganotin(IV) complexes constructed from tetrafluorophthalic acid (H2tfp) with a 1?:?1?:?1 molar ratio of H2tfp: Et3N: R3SnCl gave two of type {[R3Sn (tfp)].Et3NH}4 (R?=?Me 1, R?=?n-Bu 2), and two of type [R3Sn (tfp).Et3NH] n (R?=?PhCH2 3, Ph 4). All the complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. Complexes 1 and 4 were also confirmed by X-ray crystallography. Complex 1 is tetranuclear with a 28-membered C16O8Sn4 macrocyclic ring system with a cavity. The supramolecular structure of 1 has been found to consist of a three-dimensional network built up by intermolecular N–H?···?O, C–H?···?O hydrogen bonds and C–F?···?F weak interactions. Complex 4 is an infinite polymeric structure. The salient feature of the supramolecular structure of 4 is that of a two-dimensional plane, in which intermolecular N–H?···?O and C–H?···?π hydrogen bonds are important.  相似文献   

3.
The triorganotin(IV) derivatives of 2-mercapto-4-quinazolinone (HSqualone) of the type, R3SnL (R = Ph 1, CH32, PhCH23, p-F-PhCH24, o-F-PhCH25, n-Bu 6), were obtained by the reaction of the R3SnCl and HSqualone with 1:1 molar ratio in benzene. All complexes 1-6 were characterized by elemental analyses, IR, 1H and 13C NMR spectroscopy and the crystal structures of complexes 1-3 were also confirmed by X-ray crystallography. The structure analyses reveal that the tin atoms of complexes 1-3 are all distorted tetrahedral geometries. Furthermore, the dimeric structures in complexes 1-3 have also been found linked by intermolecular O-H?N or N-H?O hydrogen bonding interaction. Interestingly, the dimers of complexes 2 and 3 are further linked into one-dimensional chain through intermolecular C-H?S and C-H?O weak hydrogen bonding interactions, respectively.  相似文献   

4.
Four new triorganotin(IV) complexes: Me3SnL1SnMe3 (1), Ph3SnL1SnPh3 (2), [Me3SnL2] n (3), Ph3SnL2SnPh3 (4) have been synthesized from 6-anilino-1,3,5-triazine-2,4-dithiol (L1H2) and 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (L2H2). All were characterized by elemental analyses, IR and NMR spectra and X-ray diffraction analyses. Crystal structures show that 1, 2 and 4 are monomers with one ligand coordinated to two triorganotin moieties; complex 3 is a helical chain. Significant C–H ··· π, N–H ··· π interactions and intermolecular hydrogen bonds stabilize these structures.  相似文献   

5.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

6.
The set of six bis(triorganotin(IV)) esters of 4-ketopimelic acid was prepared. Their structures were studied using IR, NMR and X-ray crystallographic (cyclohexyl and ethyl derivatives) techniques both in solution and the solid state. Five of these compounds are polymeric in the solid state and depolymerise upon dissolving in non-coordinating and/or addition of coordinating solvent to monomeric species with four-coordinated tin atom or complexes with donor solvent with five-coordinated tin central atom. The tricyclohexyltin derivative is dimeric in the solid state and monomeric in solution.  相似文献   

7.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

8.
Synthesis and structural investigation of trimethyl and triphenyltin esters of the 3-, 4-amino and 3,5-diaminobenzoic acids are reported as a reinvestigation of their local and overall molecular structure based on crystal structure determinations and on correlation of solid state vibrational and γ-emission spectroscopic evidence. Evidence is provided for the existence of more than one tin environment and therefore different carboxylate coordination modes in the compounds.  相似文献   

9.
Two new complexes involving 3,4-pyridinedicarboxylic acid (3,4-H2pdc), copper(II) and cobalt(II) complexes, {[Cu(3,4-Hpdc)2(H2O)2]·2dmso}n (1) and {[Co(3,4-Hpdc)2(H2O)2]·2H2O·2dmso}n (2) (dmso = dimethylsulfoxide), have been synthesized by the diffusion method and characterized by elemental analysis, IR spectroscopy, thermal analysis, powder and single-crystal X-ray diffraction analysis, and electron paramagnetic resonance (EPR). In both compounds, the metal coordination sphere is composed of a trans-MO4N2 core and adopts a distorted octahedral geometry in accordance with X-ray diffraction and EPR results. 3,4-Hpdc? ligands bridge the metal centers giving two-dimensional (2-D) coordination polymers with four-connected uninodal nets of (4,4) topology.  相似文献   

10.
Two macrocyclic ligands, N,N′-propylene-diylbis[3-(1-aminoethyl)-6-methyl-2H-pyran-2,4(3H)-dione] I and N,N′-phenylene-diylbis[3-(1-aminoethyl)-6-methyl-2H-pyran-2,4(3H)-dione] II, have been prepared by the condensation of dehydroacetic acid (3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one) with 1,2-phenylenediamine and 1,3-propylenediamine. They have been characterized by means of elemental analysis, IR spectroscopy as well as by X-ray crystallography. The molecular structures of the compounds I and II can be described as consisting of two β-enaminone-2-pyrone rings interlaced with either alkyl chain in I or phenyl ring in II. The X-ray studies confirmed the existence of strong N–HO intramolecular hydrogen bonds in both structures. Their lengths are in accordance to lengths of RAHB intramolecular hydrogen bonds in 1,3-diketones, aryl-hydrazones, β-enaminones and related heterodienes (2.5–2.6 Å) [P. Gilli, V. Bertolasi, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 122 (2000) 10405].  相似文献   

11.
The crystal structure of the adduct of 3,5-dimethylpyridine and 3,5-dinitrobenzoic acid (DMP-DNB) has been determined at room temperature and 80 K for both undeuterated and deuterated compounds. The monoclinic crystals are isomorphous, space group P21/c and Z = 4. Very strong OHN hydrogen bonds are almost linear with fully disordered (1:1) bridge hydrogen atoms between oxygen and nitrogen atoms. This is well reflected in the difference in electron density maps the contours of which depend both on cooling and deuteration. The intramolecular hydrogen bond lengths are 2.550(2) Å for the (OHN) and 2.563(2) Å for (ODN) at room temperature and 2.529(2) Å for (OHN) and 2.531(2) Å for (ODN) at 80 K. Therefore, there is a small but meaningful isotope effect upon the O…N hydrogen bridge length at room temperature and no Ubbelohde isotope effect is observed at 80 K. The infra-red spectra show very broad stretching protonic bands in the 200–1600 cm−1 range. The isotopic ratio v(H)/v(D) at room temperature is about 1.1.  相似文献   

12.
A series of triorganotin (IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and mixed-ligands of the types: R3Sn(O2CC6HF4)m · L (m = 1, L = 0, R = Ph 1; m = 1, L = Ph3PO, R = Ph 4, Me 5), [R3Sn(O2CC6HF4)]m · L (m = 2, L = 4,4′-bipy, R = Ph 2, Me 3; m = n, L = 0, R = Me 6), and [R3Sn(O2CC6HF4) · (H2O)]m · L · C2H5OH (m = 2, L = Phen, R = Ph 7, Me 8), (4,4′-bipy = 4,4′-bipyridyl; Phen = 1,10-phenanthroline), have been synthesized by the reaction of triorganotin chloride and 2,3,4,5-tetrafluorobenzoic acid in the presence of mixed-ligands: 4,4′-bipy, triphenylphosphine oxide, or phen. All complexes were characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy analysis. Except for 5 and 8, all the complexes were also characterized by X-ray crystallography.  相似文献   

13.
In an attempt to probe a potential template role of the large alkali-metal cation cesium in organization of biorelevant ligands, 5-sulfosalicylate, 3,5-dinitrosalicylate and 2,4-dinitrophenol complexes of cesium were prepared and structurally investigated. The structures of cesium 5-sulfosalicylate, cesium 3,5-dinitrosalicylate and cesium 2,4-dinitrophenoxide monohydrate have been determined through X-ray diffraction analysis. The 5-sulfosalicylate anion has lost the proton at the −SO3H group while the 3,5-dinitrosalicylate anion at −COOH group but both retains the usual intermolecular hydrogen bond between phenolic and carboxylic oxygen. In cesium 2,4-dinitrophenoxide monohydrate, the Cs+ cation is 12-coordinate by O atoms in anions and water molecules while the metal atoms in cesium 5-sulfosalicylate and cesium 3,5-dinitrosalicylate have coordination numbers 10 and 11, respectively, with an irregular coordination sphere made up exclusively of oxygen atoms. Even more in cesium 2,4-dinitrophenoxide monohydrate, the water molecules are in rare triply bridging positions between these cations. Both complexes have layer structures containing the cations and polar groups of the ligands in core domains sandwiched by the aromatic rings above and below. The organization of all layer structures appears to be governed mainly by steric effects and electrostatic forces with very little directional influence of the cations.  相似文献   

14.
Two ionic triphenyltin complexes (1 and 2) were obtained via condensation of triphenyltin hydroxide with oxalic and malonic acids in the presence of di-isobutylamine. Their structures have been characterized by IR and multinuclear (1H, 13C, and 119Sn) NMR spectroscopies. The coordinations of tin in the two triphenyltin complexes are confirmed by X-ray crystallographic studies. In the solid state, oxalate complex 1 consists of a di-isobutylammonium cation and an oxalatotriphenylstannate anion. Tin is five-coordinate with a cis-trigonal-bipyramid (TBP) geometry, as the oxalate is a chelating bidentate ligand. Complex 1 is a 1-D polymer via hydrogen bonding between carboxylate oxygen and ammonium nitrogen. The crystallographic studies reveal that 2 is a trinuclear triphenyltin complex formed with the molar ratio of tin, acid, and amine being 3?:?2?:?1. A negative charge is delocalized among the three tins in the complex; all tins have trans-TBP geometry with three phenyls in the equatorial plane and two O in axial positions. The malonates in 2 are bridging tridentate with the free carbonyl hydrogen bonded to di-isobutylammonium through an ethanol. This coordination and significant inter- and intramolecular hydrogen bonds between ammonium and malonate result in a 3-D polymeric structure for 2.  相似文献   

15.
Three new metal complexes, Cu(4-Hcba)2(4-cba)2(Py)2 (4-Hcba=4-cyanobenzoic acid) 1 and M[H(4-cba)2]2(Py)2 (M=Ni 2, Co 3), have been prepared by the treatment of 4-Hcba with the respective metal nitrate M(NO3)2 (M=Cu, Ni, Co) in the presence of pyridine (Py). Single-crystal X-ray diffraction analyses (3 is isostructural to 2) show that the obtained complexes are of isolated mononuclear and the metal atoms have distorted octahedral coordination environment. Two different types of intramolecular hydrogen bonds exist: asymmetrical O–HO for 1 and symmetrical OHO for 2 and 3. The crystal packing between the molecular complexes is controlled mainly by T-shaped C–Hπ interactions between pyridine and phenyl rings. Preliminary discussions on IR, UV–VIS and fluorescent spectra have also been carried out.  相似文献   

16.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

17.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

18.
Four new fpa-metal complexes, [Co(fpa)2(H2O)2] (1), [Cu(fpa)2(H2O)] (2), [Zn2(fpa)4(bpp)2] n (3), and {[Zn(bpy)(H2O)4]?·?2(fpa)} n (4), have been synthesized and fully characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction, and thermogravimetric analysis (TGA), (Hfpa?=?2,2-difluoro-2-(pyridine-2-yl)acetate, bpp?=?1,3-bis(4-pyridyl)propane, bpy?=?4,4′-bipyridine). X-ray diffraction analyses reveal that 1 and 2 with 0-D structures are both extended into 3-D supramolecular networks through hydrogen bonds and π···π interactions. Complex 3 with chiral centers possesses a 1-D structure constructed by two kinds of bpp molecules and four kinds of fpa? molecules with different conformations, with bbp and fpa? bridging and capped ligands, respectively. In 4, bpy links [Zn(H2O)4]2+ into a 1-D polymeric cationic chain and uncoordinated fpa? compensates the framework charge. The results of TGA reveal that fpa? decomposes through two processes. Both 3 and 4 show strong fluorescence in the solid state at room temperature.  相似文献   

19.
The dimolybdenum complex [(η5-RC5H4)2Mo2(CO)6] (1, R = CH3CO; II, R = CH3O2C) reacts with an equimolar amount of white phosphorus P4 to yield the corresponding dimolybdenum complex containing the P2 ligand [(η5-RC5H4)2Mo2(CO)4(μ,η2-P2)] (1, R = CH3CO; 2, R = CH3O2C) in moderate yield. The two new compounds have been characterized by elemental analyses, 1H?NMR, 13C?NMR, 31 P?NMR and IR spectroscopies and their crystal structures have been determined by X-ray diffraction methods.  相似文献   

20.
Two new pentaborates, [Zn(DIEN)2][B5O6(OH)4]2 (DIEN=diethylenetriamine) (I) and [B5O7(OH)3Zn(TREN)] (TREN=tris(2-aminoethyl)amine) (II), have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, FTIR, elemental analysis and thermogravimetric analysis. Compound I crystallizes in the monoclinic system, space group P21/c (No. 14), , , , β=91.259(2)°, , Z=2. The structure consists of isolated borate polyanion [B5O6(OH)4] and zinc complex cation [Zn(DIEN)2]2+. The anionic units, [B5O6(OH)4], are linked by hydrogen bonds to form a 3D supramolecular network containing large channels, in which the templating [Zn(DIEN)2]2+ cation are located. II is monoclinic, P21/c (No. 14), , , , β=99.635(2)°, , Z=4. The structure of II is constructed from two distinct motifs, a usual [B5O7(OH)3]2− cluster and a supporting zinc complex [Zn(TREN)]2+, which are integrated through Zn-O-B linkage. This compound represents the first example of the combination of B-O cluster with transition-metal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号