首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mononuclear cobalt(III) complex [Co(L)2]Cl ·?H2O (1) (where L is H2N(CH2)2N=CC6H3(OMe)(O?)) has been prepared and characterized by IR, UV-Vis spectroscopy, conductivity measurements, elemental analysis, TGA, cyclic voltammetry and an X-ray structure determination. The cobalt(III) coordination sphere in [Co(L)2] is cis-CoN4O2 with the NNO ligands. Electrochemical studies of 1 using cyclic voltammetry indicate an irreversible cathodic peak (E pc, ca ?0.60 V) corresponding to reduction of cobalt(III) to cobalt(II).  相似文献   

2.
New azido-bridged [MnIII(salabza)(μ-1,3-N3)]n (1), and [CuII4(salabza)2(μ-1,1-N3)2(N3)2(HOCH3)2],(2) complexes with an unsymmetrical Schiff base ligand, {H2salabza = N,N’-bis(salicylidene)-2-aminobenzylamine}, have been synthesized, characterized by spectroscopic and electrochemical methods, and their crystal structures have been determined by X-ray diffraction. In complex 1, each manganese(III) atom is coordinated with N2O2 donor atoms from salabza and two adjacent Mn(III) centers are linked by an end-to-end (EE) azide bridge to form a helical polymeric chain with octahedral geometry around the Mn(III) centers. Complex 2 is a centrosymmetric tetranuclear compound containing two types of Cu(II) centers with square pyramidal geometry. Each terminal copper atom is surrounded by N2O2 atoms of a salabza ligand, and the oxygen atom of the methanol molecule. Each central copper(II) ion is coordinated with two phenoxo oxygen atoms from one salabza, one terminal azido, and two end-on (EO) bridging azido ligands. The central copper(II) ions are linked to each other by the two end-on (EO) azido groups.  相似文献   

3.
The structural, spectroscopic, and electrochemical properties of [Co{(naph)2dien}(N3)] and [Co{(naph)2dpt}(N3)], where (naph)2dien?=?bis-(2-hydroxy-1-naphthaldimine)-N-diethylenetriaminedianion and (naph)2dpt?=?bis-(2-hydroxy-1-naphthaldimine)-N-dipropylenetriaminedianion have been investigated. These complexes are characterized by elemental analyses, IR, and UV–Vis spectroscopy. The crystal structures of these complexes have been determined by X-ray diffraction. The geometry around cobalt is distorted octahedral. The electrochemical behavior of these complexes in acetonitrile solution was also investigated. Both complexes show an irreversible CoIII–CoII reduction at ca. ?0.8?V, accompanied by dissociation of the axial CoII–N3 bond. The in vitro antibacterial activities of these complexes were tested against Staphylococcus aureus and Bacillus licheniformis.  相似文献   

4.
Three ligands, 2-(3-(carboxymethyl)-1,10-phenanthroline-[5,6-d]imidazole-1-yl)acetate (CPIA), 2-(benzo[d][1,3]dioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BIP), and 2-(9H-carbazol-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (CIP), and their complexes, [Co(phen)2(CPIA)]3+ (1) (phen = 1,10-phenanthroline), [Co(phen)2(BIP)]3+ (2), and [Co(phen)2(CIP)]3+ (3), have been synthesized and characterized. Binding of the three complexes with calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods, cyclic voltammetry, and viscosity measurements. The three complexes bind to DNA through an intercalative mode, and the size and shape of the intercalative ligands have significant effects on the binding affinity of complexes to CT-DNA.  相似文献   

5.
Syntheses, structures, and antimicrobial activities of cobalt(III) complexes with two tetradentate Schiff-base ligands, (BA)2en?=?bis(benzoylacetone)ethylenediimine dianion and (acac)2en?=?bis(acetylacetone)ethylenediimine dianion, and two axial pyridines (py) have been investigated. These complexes were characterized by FT-IR, 1H-NMR, UV-Vis spectroscopy, and elemental analysis. The crystal structures of the complexes were determined by X-ray crystallography. Single-crystal X-ray diffraction analyses revealed that both complexes have distorted octahedral environments, Schiff-base ligand coordinates cobalt in four equatorial positions, and the two axial positions are occupied by pyridines. The pyridines and Schiff-base ligands are involved in N–H···O hydrogen bonds with perchlorate. Biological activities of the ligands and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species.  相似文献   

6.
Two new N2O2 unsymmetrical Schiff bases, H2L1 = 3-[({o-[(E)-(o-hydroxyphenyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol and H2L2 = 3-[({o-[(E)-(2-hydroxy-1-naphthyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol, and their copper(II) and nickel(II) complexes, [CuL1] (1), [CuL2] (2), [NiL1] (3), and [NiL2] (4), have been synthesized and characterized by elemental analyses and spectroscopic methods. The crystal structures of these complexes have been determined by X-ray diffraction. The coordination geometry around Cu(II) and Ni(II) centers is described as distorted square planar in all complexes with the CuN2O2 coordination more distorted than the Ni ones. The electrochemical studies of these complexes indicate a good correlation between the structural distortion and the redox potentials of the metal centers. The ligand and metal complexes were also screened for their in vitro antibacterial activity.  相似文献   

7.
8.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

9.
Summary The Schiff base ligands, 3-[(Phenyl)-2-hydroxy-3H-Naphth-3-ylidene)methyl]aldamine (1) and 3-[(benzene-4-trifluoromethyl)-2-hydroxy-3H-naphth-3-ylidene)methyl]aldamine (2), and their corresponding Cu(II) complexes (I andII were synthesized. The crystal and molecular structures ofI andII were determined. CompoundI crystallizes in the triclinic crystal systema=10.804(5),b=12.589(5), andc=10.369(3) (Å), =107.72(3), =95.75(3), and =76.32(4)(°), in the space group P withZ=2. CompoundII crystallizes in the triclinic crystal systema=10.718(2),b=13.861(4), andc=10.110(9) (Å), =95.99(2), =90.16(2), and =93.90(2)(°), in the space group P withZ=2. The geometry around the metal atom in both complexesI andII is square planar.
Kupfer(II)-Komplexe von Schiffbasen von 2-Hydroxy-3-naphthaldehyd. Die Kristall-und Molekülstrukturen von Bis{(phenyl)[(2-oxo-3H-naphth-3-yliden)methyl]aminato}kupfer(II) und Bis{(benzen-4-trifluoromethyl)[(2-oxo-3H-naphth-3-yliden)methyl]aminato}kupfer(II)
Zusammenfassung Es wurden die Schiffbasen-Liganden 3-[(Phenyl)-2-hydroxy-3H-naphth-3-yliden)-methyl]aldamin (1) und 3-[(Benzen-4-trifluoromethyl)-2-hydroxy-3H-naphth-3-yliden)-methyl]aldamin (2) inklusive der entsprechenden Kupfer(II)-KomplexeI undII dargestellt. VonI undII wurden die Kristallstrukturen ermittelt. KomplexI kristallisiert im triklinen System mita=10.804(5),b=12.589(5),c=10.369(3) Å, =107.72(3), =95.75(3) und =76.32(4)° in der Raumgruppe P mitZ=2. VerbindungII kristallisiert ebenfalls im triklinen System mita=10.718(2),b=13.861(4),c=10.110(9) Å, =95.99(2), =90.16(2) und =93.90(2)° in der Raumgruppe P mitZ=2. Die Geometrie rund um Cu ist in beiden Komplexen quadratisch-planar.
  相似文献   

10.
N,N′-bis((2-hydroxyphenyl)(phenyl)methylidene)propane-1,2-diaminato-N,N′,O,O′)-(nitrato-O)-manganese(III) methanol solvate ([Mn(C29H24N2O2)(NO3)CH3OH]) was synthesized and characterized by FTIR, UV–Vis, TG–FTIR, TG/DSC, molar conductivity, magnetic moment measurement and single crystal X-ray analysis. In the structure, the Mn(III) ion adopts a distorted octahedral geometry with two nitrogen and two oxygen atoms from the Schiff base ligand in the equatorial plane, and the nitrate ion and methanol molecule in the axial position. The effects of organic solvents of various polarities on the UV–Vis spectra of the ligand and complex were investigated. The manganese(III) complex is easily dissolved in organic polar aprotic solvents and has moderate solubility in organic polar protic solvents.  相似文献   

11.
The tridentate ONO-donor Schiff base ligand derived from the condensation of 1-ferrocenyl-1,3-butanedione and 2-aminophenol, generated in situ and treated further with potassium tert-butoxide, reacted in THF with Co(NO3)2·6H2O in the presence of pyridine to afford the ionic complex [{(η5-C5H5)Fe(η5-C5H4)-C(O)CH=C(CH3)N-C6H4-2-O}2Co(III)]-[K(HOCH2CH3)2]+ (1, 50% yield). Compound 1 was characterized by elemental analysis, FT-IR, and multidimensional 1H and 13C NMR spectroscopy. Single-crystal X-ray diffraction reveals that the two metalloligands are meridionally coordinated to a Co(III) ion that adopts a slightly distorted octahedral geometry. The doubly solvated potassium counter-ion is asymmetrically positioned with respect to the two metalloligands. Such an arrangement allows the observation by 1H NMR of restricted rotation of the ferrocenyl units and the splitting of both carbonyl and imine carbons, thus suggesting that the structure observed in the solid state is retained in solution. Complex 1 exhibits in its cyclic voltammetry curve two anodic reversible waves attributed to the oxidation of Co(III)-phenolates into Co(III)-phenoxyl radical and that of the ferrocenyl fragment into its ferrocenium counterpart.  相似文献   

12.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

13.
A new series of complexes of the type bis(N-substituted-salicydenaminato)copper(II) (1–9), have been synthesized and characterized by IR, UV–Vis and elemental analysis methods. The molecular structure of bis(N-2-bromophenyl-salicydenaminato)copper(II) (6), was determined using X-ray crystallography. There are two independent molecules in the structure. Each shows a neutral, mononuclear, four-coordinate, square-planar trans-Cu[N2O2] geometry and, in each, the Cu atom and the ligating atoms are coplanar. The chelating N–Cu–O angle is 91.39(11)° for molecule one and 91.20(11)° for molecule two, whereas the non-chelating N–Cu–O angles are 88.61(11) and 88.80(11)°, respectively. The trans-N–Cu–N and trans-O–Cu–O bond angles are 180°. The electronic absorption spectra of copper(II) complexes (1–9), indicate that the d–d band energy is dependent on the nature and position of substituent on phenyl ring of the salicyldenimine ligand. The UV–Vis spectra in various solvents were measured and a relationship between absorption spectra and dielectric constant of the solvents is reported.  相似文献   

14.
Reaction of organotin(IV) chloride(s) with 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone, [HL] (1) yielded [MeSnCl2(L)] (2), [BuSnCl2(L)] (3), [Me2SnCl(L)] (4), and [Ph2SnCl(L)] (5). The ligand (1) and its organotin(IV) complexes have been characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of 5 was also determined by X-ray diffraction. There are two independent molecules in the asymmetric unit and the central tin(IV) atom is six-coordinate in distorted octahedral geometry. The ligand (1) and complexes were screened for their in vitro antibacterial activities. The cytotoxic activities of 15 were tested against A2780 and A2780/Cp8 cancer cell lines. The compounds have better antibacterial activities than the free ligand; 25 are more potent cytotoxic agents than 1, while the diphenyltin(IV) 5 is more active with IC50 values of 0.05 and 0.54?µmol?L?1 against A2780 and A2780/Cp8 cell lines, respectively.  相似文献   

15.
The mononuclear manganese(III) complex of formula [Mn(saloph)(N3)(CH3OH)] [saloph=N,N′-o-phenylenebis(salicylidenaminato)] has been synthesized and its crystal structure has been determined by single-crystal X-ray diffraction method. The compound has a 1D hydrogen-bonded extended structure. Both the FT-IR spectrum and the electrospray ionization mass spectrum (ESI-MS) of the title compound have been recorded. The thermogravimetric analysis has also been carried out. Magnetic calculations showed the presence of antiferromagnetic exchange interactions between the manganese(III) ions through hydrogen bonds with J=−4.0 cm−1.  相似文献   

16.
17.
18.
Abstract

A series of six new mononuclear Schiff base complexes, 16 of cobalt(III) of the general formula, [CoLX] or its adduct with methanol, is reported. The pentadentate Schiff base ligand (H2L) was obtained by the condensation of N-(3-aminopropyl)-N-methylpropane-1,3-diamine with 1-(2-hydroxyphenyl)ethanone (H2L1) or 1-(2-hydroxyphenyl)propan-1-one (H2L2). X stands for the pseudohalides, N3, N(CN)2? , and NCS. The complexes have been synthesized by the reaction of equimolar amounts of cobalt(II) nitrate with H2L1 or H2L2 in the presence of the respective pseudohalide in methanol medium. All the complexes have been characterized by microanalytical, spectroscopic, single crystal XRD (except 3), and other physicochemical studies. Structural studies reveal that the central Co(III) ion in 1, 2, 4, 5, and 6 adopts a distorted octahedral geometry with a CoN4O2 chromophore. Weak intermolecular H-bonding and/or π-interactions are operative in these complexes to bind the molecular units. The antimicrobial activity of all the complexes and their constituent Schiff bases has been tested against some common bacteria and fungi.  相似文献   

19.
A novel and highly efficient approach for the synthesis of H2Me2bqb and H2Me2bpb using ionic liquid as an environmentally benign reaction medium has been developed, eliminating the need for the pyridine as a toxic solvent. The Ni(II) complex of the dianionic ligand Me2bqb2−, [Me2bqb2− = 1,2-bis(quinoline-2-carboxamide)-4,5-dimethyl-benzene dianion], has been synthesized and characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structure of [Ni(Me2bqb)] (1), has been determined by X-ray crystallography. The complex exhibits distorted square-planar NiN4 coordination geometry with two short and two long Ni–N bonds (Ni–N ∼1.85 and ∼1.96 Å, respectively). The electrochemical behavior of [Ni(Me2bqb)] (1), has been studied by cyclic voltammetry and compared with the analogous complex, [Ni(Me2bpb)] (2).  相似文献   

20.
A new hydrazone Schiff base, (E)-N′-(3-ethoxy-2-hydroxybenzylidene)isonicotinohydrazide (H2L), has been prepared and characterized by elemental analyses, spectroscopic methods, and single-crystal X-ray diffraction. The corresponding dioxomolybdenum(VI) complex [Mo(O)2(L)(CH3OH)] was synthesized and characterized by spectroscopic methods and by single-crystal X-ray diffraction. The hydrazone ligand coordinates to Mo through the phenolate O, imine N, and enolic O. The Mo center displays a distorted octahedral geometry with the three donors of the ligands and an oxo defining the equatorial plane, and one methanol and another oxo occupying the axial positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号