首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of singly-bonded dinuclear complexes [(η5-CH3O2CC5H4)2M2(CO)6] (I, M?=?Mo; II, M?=?W) with the diarenylditelluride [4-CH3C6H4Te]2 in refluxing toluene for 4–6?h afforded dinuclear complexes 1 and 2 trans/ae-[(η5-RC5H4)2M2(CO)4(μ-ArTe)2] (Ar?=?4-CH3C6H4Te). Complexes 1 and 2 were also synthesized by reactions of triply-bonded dinuclear complexes [(η5-CH3O2CC5H4)2M2(CO)4] (III, M?=?Mo; IV, M?=?W) with [4-CH3C6H4Te]2 in refluxing toluene for 1?h. Both complexes have been characterized by elemental analysis, 1H NMR, 13C NMR and IR spectroscopy and X-ray diffraction. Preliminary low-temperature NMR experiments on complexes 1 and 2 have revealed that in solution each complex goes through a rapid inversion of the butterfly four-membered ring M2Te2.  相似文献   

2.
Dehydrogenating complexation of borolenes with carbonyls (Ru3(CO)12, Os3(CO)12), Wilkinson's catalyst (RhCl(PPh3)3) and related compounds (RuCl2(PPh3)3, RuHCl(PPh3)3, OSCl2(PPh3)3), and (η6-arene)ruthenium complexes (Ru(η-C6H6)(η4-C6H8), [Ru(η-C6H6)Cl2]2, [Ru(η-C6-Me6)Cl2]2) leads to the (η5-borole)metal complexes of Ru, Os, and Rh. Inter alia, the preparation of the complexes Ru(CO)35-C4H4BF) (R = Ph, OMe, Me), Os(CO)3L (L = η5-C4H4BPh), MHClL(PPh3)2 (M = Ru, Os), RhClL(PPh3)2, and RuL(η-C6R6) (R = H, Me) is described. The structures of RuHClL(PPh3)2 and RhClL(PPh3)2 have been determined by X-ray diffraction analysis.  相似文献   

3.
Complexes containing C4 ligands attached to one or two AuRu3 clusters by conventional σ, 2π interactions have been obtained from reactions between (R3P)AuC≡CC≡CAu(PR3) (R = Ph, tol) or Au(C≡CC≡CH){P(tol)3} and either Ru3(CO)12, Ru3(CO)10(NCMe)2 or Ru3(μ-dppm)(CO)10. The X-ray determined structures of {(R3P)AuRu3(CO)9}23232-C2C2) [R = Ph (1) (three solvates), tol (2)], AuRu332-C2C≡CAu(PPh3)}(CO)9(PPh3) (3) and {(Ph3P)AuRu3(μ-dppm)(CO)7} (μ3232-C2C2){Ru3(μ-H)(μ-dppm)(CO)7} (4) are reported.  相似文献   

4.
Reaction of Ru3(μ-dppm)(CO)10 [dppm = bis(diphenylphosphino)methane] with one equivalent of dppa [dppa = bis(diphenylphosphino)acetylene] afforded Ru3(μ-dppm)(CO)91-dppa) which possesses a monodentate dppa ligand,an X-ray structural study revealing that all phosphorus donor atoms are arranged in equatorial coordination sites with respect to the triruthenium cluster plane.Reaction of Ru3(CO)9(NCMe)3 with excess dppa afforded fair yields of Ru3(CO)91-dppa)3,which possesses three monodentate dppa ligands.Reaction of three equivalents of Ru3(μ-dppm)(CO)91-dppa) with Ru3(CO)9(NCMe)3 or reaction of Ru3(CO)91-dppa)3 with excess Ru3(μ-dppm)(CO)10 afforded low yields of the dodecanuclear first-generation dendrimer Ru3(CO)9{PPh2C2PPh2Ru3(μ-dppm)(CO)9}3.Reaction of WIr3(μ-CO)3(CO)8(η-C5Me5) with excess Ru3(μ-dppm)(CO)91-dppa) afforded fair yields of the decanuclear dppa-bridged tri-cluster WIr3(CO)9{PPh2C2PPh2Ru3(μ-dppm)(CO)9}2(η-C5Me5).  相似文献   

5.
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side-on carbon P,S-chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like-isomer is oxidized at W while the unlike-isomer is oxidized at Ru, which is proven by IR, NIR and EPR-spectroscopy supported by spectro-electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)-(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.  相似文献   

6.
Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine, P(C4H3O)3, at 40 °C in the presence of a catalytic amount of Na[Ph2CO] furnishes two triruthenium complexes [Ru3(CO)10{P(C4H3O)3}2] (1) and [Ru3(CO)9{P(C4H3O)3}3] (2) with the ligand coordinated through the phosphorus atom. Treatment of 1 and 2 with Me3NO at 40 °C affords the dinuclear phosphido-bridged complexes [Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}] (3) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}] (4), respectively, that are formed via phosphorus–carbon bond cleavage of a coordinated phosphine followed by coordination of the dissociated furyl moiety to the diruthenium center in a σ,π-alkenyl mode. Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine in refluxing benzene gives, in addition to 3 and 4, low yields of the cyclometallated complex [Ru3(CO)9{μ-η11-P(C4H3O)2(C4H2O)}2] (5). Treatment of 3 with EPh3 (E = P, As, Sb) at room temperature yields the monosubstituted derivatives [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(EPh3)] (E = P, 8; E = As, 9; E = Sb, 10). Similar reactions of 3 with P(C4H3O)3, P(OMe)3 and ButNC yield 4, [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(OMe)3}] (11) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(NCBut)] (12), respectively. The molecular structures of complexes 3, 4 and 8 have been elucidated by single crystal X-ray diffraction studies. Each complex contains a bridging σ,π-alkenyl group and while in 4 the phosphine is bound to the σ-coordinated metal atom, in 8 it is at the π-bound atom. Protonation of 3 and 4 gives the hydride complexes [(μ-H)Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}]+ (6) and [(μ-H)Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}]+ (7), respectively, while heating 3 with dimethylacetylenedicarboxylate (DMAD) in refluxing toluene gives the cyclotrimerization product, C6(CO2Me)6.  相似文献   

7.
The thermal reaction of Ru3(CO)12 ( 1 ) with salicylic acid, in the presence of triphenylphosphine, pyridine, or dimethylsulfoxide, afforded the dinuclear complexes Ru2(CO)4(μ‐O2CC6H4OH)2L2 ( 2 ) [L = PPh3 ( 2a ). C5H5N ( 2b ); (CH3)2SO ( 2c )]. Complex 2b was further reacted with the aromatic dimmines 2,2′‐dipyridine or 1,10‐phenanthroline to give the cationic diruthenium complexes [Ru2(CO)2(μ‐CO)2(μ‐O2CC6H4OH)(N∩N)2]+ ( 3 ) [(N∩N) = 2,2′‐dipyridine ( 3a ); 1,10‐phenanthroline ( 3b )], which were isolated as their tetraphenylborate salts. All five novel complexes were characterized spectroscopically and analytically. For 2a – 2b and 3a – 3b , single‐crystal X‐ray diffraction studies were also carried out.  相似文献   

8.
The gold complexes Au(C≡CC6H4C≡CC6H4Me)(PPh3) (3) and {Au(PPh3)}2(μ-C≡CC6H4C≡CC6H4C≡CC6H4C≡C) (6), prepared from the reaction of AuCl(PPh3) with the corresponding terminal or trimethylsilyl protected alkynes, react readily with Ru3(CO)10(μ-dppm) to afford phenylene ethynylene derivatives featuring the Ru3(μ-AuPPh3)(μ-C2R)(CO)7 cluster “end-caps”. The hydrido cluster Ru3(μ-H)(μ-C2C6H4C≡CC6H4Me)(CO)7 (4a) has also been obtained. There are significant differences in the absorption spectra of the organic precursors, the gold complexes and the clusters indicate a mixing of electronic states between the cluster and phenylene ethynylene moieties, while the presence of the Ru3 and in particular Ru3(μ-AuPPh3) cluster end-caps leads to a quenching of the phenylene ethynylene centred emission. The crystallographically determined structures of 3, 4a and Ru3(μ-AuPPh3) (μ-C2C6H4C≡CC6H4Me)(CO)7 (4b) are reported.Dedicated to Professor B.F.G. Johnson, one of the pioneers of cluster chemistry, in recognition of his outstanding contributions to the field.  相似文献   

9.
Complex Ru3(μ-CO)2(CO)631144-C4Ph2(CH=CHPh)2} containing an open triruthenium framework undergoes rearrangement to the Ru3-triangular Ru3(CO)831142-C4Ph2(CH=CHPh)2) cluster when heated in refluxing hexane. Reactions of the latter complex with PPh3, P(OPri)3, and CO were studied. The structure of one of the reaction products, the Ru3(CO)8(PPh33114-C4Ph2(CH=CHPh)2} cluster, was established by X-ray structural analysis.  相似文献   

10.
Reaction of [Ru3(CO)12] with an equimolar amount of PPh2H affords a range of products including an octaruthenium species [Ru88-P)(μ216-CH2C6H5)(μ2-CO)2(CO)17], in which, as established X-ray crystallographically, a phosphorus atom is encapsulated in a square anti-prism of ruthenium atoms and a benzyl group is coordinated to two of these rutheniums through all seven carbon atoms.  相似文献   

11.
The olefinic tertiary phospine complex Ru3(CO)10(μ-η2, P-CH2CHC6H4PPh2) is converted to the title μ4-alkyne-Ru4 cluster at 135°C; the latter is also formed from H2Ru332, P-HCCC6H4PPh2)(CO)8 and Ru3(CO)12. Crystals of the Ru4 complex are monoclinic, space group P21, with a 8.700(3), b 17.611(3), c 11.926(2) Å, β 102.720(3)°, with Z = 2; 1702 data (I > 2.5 (σ)I) were refined to R = 0.026, Rw = 0.028. The molecule contains a distorted octahedral Ru4C2 core, one carbon of which is attached to an o-C6H4PPh2 moiety coordinated via P to a wing-tip Ru of the Ru4 butterfly.  相似文献   

12.
New tetranuclear complexes have been prepared using bridging phosphide or thiolate groups between phosphine gold fragments and the compound [Ru3(CO)93243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})]. The crystal structures of the intermediates [Ru3(CO)8(NMe3)(μ3243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})] and [Ru3(CO)8(PPh2H)(μ3243-{Me3SiCC(C2Fc)SC(Fc)CSCCSiMe3})] have been solved.  相似文献   

13.
Thermal treatment of C9H7SiMe2C9H7 and C9H7Me2SiOSiMe2C9H7 with Ru3(CO)12 in refluxing xylene gave the corresponding diruthenium complexes (E)[(η5-C9H6)Ru(CO)]2(μ-CO)2 [E = Me2Si (1), Me2SiOSiMe2 (2)]. A desilylation product [(η5-C9H7)Ru(CO)]2(μ-CO)2 (3) was also obtained in the latter case. Similar treatment of C9H7Me2SiSiMe2C9H7 with Ru3(CO)12 gave a novel indenyl nonanuclear ruthenium cluster Ru96-C)(CO)143522-C9H7)2 (5) with carbon-centered tricapped trigonal prism geometry, in addition to the diruthenium complex (Me2SiSiMe2)[(η5-C9H6)Ru(CO)]2(μ-CO)2 (4) and the desilylation product 3. Complex 4 can undergo a thermal rearrangement to form the product [(Me2Si)(η5-C9H6)Ru(CO)2]2 (6). The molecular structures of 1, 2, 4, 5, and 6 were determined by X-ray diffraction.  相似文献   

14.
The complexes [Ru3(CO)7(PPh2)2(C6H4)] and [Ru2(CO)5(PPh3)(μ-PPh2)(μ-OCPh)] were obtained by pyrolysis of [Ru3(CO)9(PPh3)3] and tested as catalysts for the hydrogenation of cyclohexene and 2-cyclohexen-1-one. The structure of [Ru2(CO)5(PPh3)(μ-PPh2)(μ-OCPh)] was established by a single crystal X-ray diffraction study.  相似文献   

15.
The complete sequence of reactions in the base‐promoted reduction of [{RuII(CO)3Cl2}2] to [RuI2(CO)4]2+ has been unraveled. Several μ‐OH, μ:κ2‐CO2H‐bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal‐coordinated carbonyls by hydroxides. The isolated compounds are [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐OH)(NPF‐Am)2][PF6] ( 1 ; NPF‐Am=2‐amino‐5,7‐trifluoromethyl‐1,8‐naphthyridine) and [Ru2(CO)4(μ:κ2C,O‐CO2H)(μ‐OH)(NP‐Me2)2][BF4]2 ( 2 ), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru4(CO)8(H2O)23‐OH)2(μ:κ2C,O‐CO2H)4][CF3SO3]2 ( 3 ) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a π‐donor chlorido ligand, which results in [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐Cl)(NP‐PhOMe)2][BF4] ( 4 ). The production of [Ru2(CO)4]2+ has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)–diruthenium(II) complex to a dihydrido–diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the RuI? RuI single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru2(CO)4(CH3CN)6]2+ precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by TlI salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear RuI2RuII complex [{Ru(NP‐Am)2(CO)}{Ru2(NP‐Am)2(CO)2(μ‐CO)2}(μ33C,O,O′‐CO2)][BF4]2 ( 6 ). These unprecedented diruthenium compounds are the dinuclear congeners of the water–gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.  相似文献   

16.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

17.
Two new complexes, based on the unit Ru2Cl(μ-O2CC4H4N)4 (1) (O2CC4H4N = pyrrole-2-carboxylate), Ru2Cl(μ-O2CC4H4N)4(H2O)·4H2O [1(H 2 O)·4H 2 O], and Ru2Cl(μ-O2CC4H4N)4(Me2CO) [1(Me 2 CO)], are synthesized and structurally characterized. The physical properties of these complexes are studied and compared with those previously reported for Ru2Cl(μ-O2CC4H4N)4(thf)·thf·H2O [1(thf)·thf·H 2 O]. The nature of the solvent molecule bonded to the axial position of the dimetallic unit determines the supramolecular interactions leading to different arrangements in the solid state. The presence of NH groups in the pyrrolic rings favours the existence of hydrogen bond interactions that are present in the three complexes. In addition, complex 1(Me 2 CO) shows π–π stacking interactions through pyrrolic rings of different dimetallic units. Dedicated to the memory of Prof. F. Albert Cotton.  相似文献   

18.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

19.
The complexes (η-C5Me5)2Rh2(μ-CO) {μ-η22-C(O)CRCR} are obtained from reactions between (η-C5Me5)2Rh2(CO)2 and the alkynes RCCR (R  CF3, CO2Me, or Ph) at 25°C. The molecular geometry of the complex with R  CF3 has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a μ-η22 conformation. Other complexes isolated from these reactions include (η-C5Me5)Rh(C6R6) (R  CF3, CO2Me), (η-C5Me)2Rh2(C4R4) (R  CO2Me) and (η-C5Me5)2Rh2(CO2C2R2) (R  Ph). The reaction between (η-C5Me5)2Rh2(CO)2 and C6F5CCC6F5 gives (η-C5Me5)2Rh2(CO)2(C6F5C2C6F5). Mononuclear complexes such as (η-C5Me5)Co(C4R4CO) are the major products isolated from reactions between (η-C5Me5)2CO2(CO)2 and alkynes at 25°C.  相似文献   

20.
The possibility of making metal—metal bonded heterobimetallic species by metathesis of ruthenium dichlorides with anionic carbonylates is demonstrated by the isolation of MoRu(μ-Cl)(μ-CO)(CO)2(PPh3)2(η-C5H5) (1) and MnRuCl(μ-CO)2(CO)3(μ-dppm)2 (2), obtained by action of [Mo(CO)3(η-C5H5]? on RuCl2(PPh3)3 and of Mn(CO)5? on RuCl2(dppm)2, respectively. In contrast, reaction of Mn(CO)5? with RuCl2(PMe3)4 yielded an ionic species 3 containing the diruthenium cation Ru2Cl3(PMe3)6+. More interestingly, the action of Mn(CO)5? on RuCl2(PPh3)3 resulted in the formation of the unexpected complex MnRu(μ-PPh2)(CO)6(PPh3)2 (4) in which the phosphido group PPh2 bridges the two metals; this process is shown to involve a hydride intermediate, and elimination of a molecule of benzene, both identified in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号